

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SERVICE ORIENTED ARCHITECTURE FOR
COAST GUARD COMMAND AND CONTROL

by

Russell E. Dash
Robert H. Creigh

March 2007

 Thesis Advisor: Rick Hayes-Roth
 Second Reader: Rex Buddenberg

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Service Oriented Architecture for Coast Guard
Command and Control
6. AUTHOR(S) Russell Dash and Robert Creigh

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The Coast Guard's software architecture does not meet the organization's needs for information

sharing or command and control. The Commandant of the Coast Guard recently mandated the
implementation of a Service Oriented Architecture (SOA) to address this problem. This thesis describes a
Service Oriented Architecture for Coast Guard Command and Control that integrates legacy applications
and provides new capabilities. Traditional software architecture descriptions make it difficult to identify and
understand the trade-offs between quality attributes that are inherent in the design. We clarify these critical
issues by using multiple scenarios and use cases, in addition to diagrams and functionality requirements.
Defining the architecture in this manner enables an auditor to determine the architecture's validity. The
Coast Guard also needs a plan to implement this SOA. This thesis defines a process that will deliver value
in the form of usable capabilities in an incremental manner. It recognizes the constantly changing nature of
both the problem and the necessary solution, and evolves accordingly. It continually plans for, adapts to,
and exploits predictable advances in technology to deliver more value. The iterative method we propose
includes cyclical evaluation of the system requirements, architecture, and implementation to provide
continuous improvement.

15. NUMBER OF
PAGES

151

14. SUBJECT TERMS
Service Oriented Architecture (SOA), Command and Control (C2), Coast Guard (USCG),
C4ISR, Web Services, Extensible Markup Language (XML), Software Architecture
Evaluation, Architecture Tradeoff Analysis Method (ATAM), Software Architecture
Implementation.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SERVICE ORIENTED ARCHITECTURE FOR COAST GUARD COMMAND
AND CONTROL

Russell E. Dash

Lieutenant Commander, United States Coast Guard
B.S., United States Coast Guard Academy, 1994

Robert H. Creigh

Lieutenant, United States Coast Guard
B.S., University of Phoenix, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
March 2007

Authors: Russell E. Dash

 Robert H. Creigh

Approved by: Rick Hayes-Roth

Thesis Advisor

Rex Buddenberg
Second Reader

Dan Boger
Chairman, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Coast Guard's software architecture does not meet the organization's

needs for information sharing or command and control. The Commandant of the

Coast Guard recently mandated the implementation of a Service Oriented

Architecture (SOA) to address this problem. This thesis describes a Service

Oriented Architecture for Coast Guard Command and Control that integrates

legacy applications and provides new capabilities. Traditional software

architecture descriptions make it difficult to identify and understand the trade-offs

between quality attributes that are inherent in the design. We clarify these critical

issues by using multiple scenarios and use cases, in addition to diagrams and

functionality requirements. Defining the architecture in this manner enables an

auditor to determine the architecture's validity. The Coast Guard also needs a

plan to implement this SOA. This thesis defines a process that will deliver value

in the form of usable capabilities in an incremental manner. It recognizes the

constantly changing nature of both the problem and the necessary solution, and

evolves accordingly. It continually plans for, adapts to, and exploits predictable

advances in technology to deliver more value. The iterative method we propose

includes cyclical evaluation of the system requirements, architecture, and

implementation to provide continuous improvement.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. BACKGROUND ... 1
B. SOFTWARE ARCHITECTURE.. 4

1. Software Architecture for Command and Control 5
2. Coast Guard Command and Control Architecture................ 7
3. Service-Oriented Architecture (SOA)..................................... 8

C. THESIS QUESTIONS .. 9
1. How Can the Coast Guard Implement a Service-Oriented

Architecture for Command and Control? 10
2. What is the Optimal Implementation Plan for this Coast

Guard Command and Control (CGC2) SOA? 10
D. THESIS ORGANIZATION.. 10

II. SOA BACKGROUND INFORMATION... 13
A. SERVICES ORIENTED ARCHITECTURE... 13
B. XML.. 13
C. SERVICES ... 14

1. Common Principles of Service Orientation 14
2. Wrappers .. 16

D. WEB SERVICE STACK ... 17
1. Process Layer .. 18
2. Description Layer .. 18
3. Messages Layer ... 19
4. Communications Layer ... 19
5. Security .. 20
6. Management... 20

E. DATA MODELS AND INFORMATION EXCHANGE......................... 21
F. EXAMPLE WEB SERVICE .. 22

1. Search Pattern Service (SPS) Description........................... 22
2. Current Features.. 23
3. Potential Future Features.. 23
4. Java-based Client Application.. 24

G. CONCLUSION ... 25

III. DRAFT USCG COMMAND AND CONTROL SERVICE ORIENTED
ARCHITECTURE (CGC2 SOA).. 27
A. INTRODUCTION.. 27
B. ARCHITECTURAL VIEWS .. 27

1. High Level Operational Concept (OV-1)............................... 28
2. Operational Node Connectivity Description (OV-2) 28
3. Systems Interface Description (SV-1) 29

C. SCENARIO .. 32
D. FUNCTIONAL AREAS... 35

 viii

1. Planning.. 35
a. Discussion... 35
b. Legacy Planning Systems.. 37
c. Planning Services ... 38
d. Planning Conclusion .. 39

2. Tasking ... 39
a. Discussion... 39
b. Legacy Tasking Systems ... 40
c. Tasking Services... 40
d. Tasking Conclusion.. 41

3. Communicating.. 41
a. Discussion... 41
b. Legacy Communications Systems............................ 43
c. Communicating Services ... 43
d. Communicating Conclusion 44

4. Monitoring .. 44
a. Discussion... 44
b. Legacy Monitoring Systems 45
c. Monitoring Services.. 46
d. Monitoring Summary .. 47

5. Reporting.. 47
a. Discussion... 47
b. Legacy Reporting Systems .. 48
c. Reporting Services ... 49
d. Reporting Summary.. 49

E. QUALITY ATTRIBUTES .. 49
1. Utility Tree .. 50
2. Quality Attribute – Interoperability (1.0.0)............................ 52
3. Quality Attribute – Security (2.0.0) 52
4. Quality Attribute – Usability (3.0.0) 53
5. Quality Attribute – Extensibility (4.0.0) 54
6. Quality Attribute – Scalability (5.0.0).................................... 55
7. Operational Examples ... 56

F. CONCEPTUAL DATA MODEL (CDM) .. 58
1. Planning Element... 58
2. Mission Element .. 59
3. Task Element.. 60
4. Asset Element .. 61
5. Target Element... 62
6. CDM Conclusion .. 63
7. Information Exchange Models.. 63
8. Maritime Information Exchange Model (MIEM) 64

G. PRODUCT LINE ARCHITECTURE FOR COMPOSITE
APPLICATIONS... 65
1. Composite Applications.. 65

 ix

2. Product Line Architectures... 66
3. Mashability ... 67
4. Conclusion ... 68

IV. IMPLEMENTATION PLAN ... 71
A. INTRODUCTION.. 71
B. DASH-CREIGH IDeA METHOD... 73

1. Introduction.. 73
2. Architecture Loop.. 73
3. Service Development Loop (SDL) .. 77
4. IDeA Conclusion .. 79

C. ORGANIZE FOR SUCCESS.. 80
D. BEST PRACTICES AND WORST PRACTICES................................ 81
E. SOA’S IMPACT ON QUALITY ATTRIBUTES................................... 85
F. CONCLUSION ... 89

V. CONCLUSIONS AND RECOMMENDATIONS... 91
A. CONCLUSION ... 91
B. RECOMMENDED FUTURE RESEARCH .. 92

1. Coast Guard Data Models ... 92
2. Planning Services Based on MHS-OPS 92
3. Operations Watchstander Console 92
4. PKI for SOA .. 93
5. XMPP for Coast Guard Command and Control................... 93

LIST OF REFERENCES.. 95

BIBLIOGRAPHY ... 99

APPENDIX A. U.S. COAST GUARD ORGANIZATIONAL RELATIONSHIPS 103
A. WITHIN THE FEDERAL GOVERNMENT .. 103
B. WITHIN THE COAST GUARD... 103
C. WITHIN THE SECTOR... 104
D. CONCLUSION ... 106

APPENDIX B. COMMUNICATIONS INTEROPERABILITY................................. 107
A. NETWORK-CENTRIC.. 107
B. REQUIRED NETWORK CAPABILITIES ... 108

1. Availability.. 108
2. Quality of Service (QoS).. 108
3. Public Key Infrastructure (PKI)... 109
4. SNMP for Remote Management.. 110

C. WEB SERVICES STACK... 110
1. Process Layer .. 111
2. Description Layer .. 111
3. Messages Layer ... 111
4. Communications Layer ... 111
5. Security .. 111
6. Management... 112

 x

APPENDIX C. SEARCH PATTERN WEB SERVICE SOURCE CODE 113
A. CODE OVERVIEW... 113
B. SEARCH PATTERN CLASS ... 113
C. SEARCH CLASS ... 114
D. NAV CLASS... 116
E. POSITION CLASS ... 117

F. WEB SERVICE DESCRIPTION LANGUAGE (WSDL)......... 118

APPENDIX D. SEARCH PATTERN CLIENT SOURCE CODE 121
A. CODE OVERVIEW... 121
B. SEARCH PATTERN SWING CLIENT ... 121

INITIAL DISTRIBUTION LIST ... 129

 xi

LIST OF FIGURES

Figure 1. Efficient Thought (From: Hayes-Roth Hyper-beings Fig 2.).................. 6
Figure 2. Coast Guard Command Center System Model (From: Command

Center Program Manual Figure 1-2-1).. 7
Figure 3. Web Services Architecture Stack (After “Web Services

Architecture” Figure 3-1)... 18
Figure 4. Java Client – Sector Search ... 25
Figure 5. CGC2 SOA Functional Areas and Actors (OV-1) 28
Figure 6. CGC2 SOA Operational Node Connectivity (OV-2)............................ 29
Figure 7. CGC2 SOA Systems Interface Description (SV-1) 30
Figure 8. Utility Tree (top level).. 51
Figure 9. Utility Tree – Interoperability... 52
Figure 10. Utility Tree – Security ... 53
Figure 11. Utility Tree – Usability... 54
Figure 12. Utility Tree – Extensibility ... 55
Figure 13. Utility Tree – Scalability .. 56
Figure 14. Data Model – Planning Element ... 59
Figure 15. Data Model – Mission Element... 60
Figure 16. Data Model – Task Element ... 61
Figure 17. Data Model – Asset Element .. 62
Figure 18. Data Model – Target Element... 62
Figure 19. MIEM – Maritime Object ... 65
Figure 20. Example Composite Application... 66
Figure 21. Command and Control SOA as PLA .. 67
Figure 22. Theoretical Capability Derived Over Time .. 71
Figure 23. Actual Capability Derived Over Time.. 72
Figure 24. IDeA Architecture Loop .. 76
Figure 25. IDeA Service Development Loop ... 78
Figure 26. SOA Best Practices and Worst Practices ... 82
Figure 27. Quality Attribute Importance for CGC2 SOA 86
Figure 28. SOA Support for Quality Attributes ... 86
Figure 29. Coast Guard Operational Chain of Command.................................. 103
Figure 30. U.S. Coast Guard Sector Commands (From: Command Center

Program Manual Figure 2-1-1) ... 104
Figure 31. Sector Command Center Duties (After: Command Center Program

Manual Figure 2-2-2) .. 105
Figure 32. Web Services Architecture Stack (After “Web Services

Architecture” Figure 3-1)... 111

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Search Pattern Service Parameters ... 23
Table 2. Operational Examples and Corresponding Quality Attributes............. 57
Table 3. IDeA Architecture Loop – Steps and Outputs..................................... 74
Table 4. IDeA Service Development Loop – Steps and Outputs 77
Table 5. SOA Quality Attribute Impact (After: O’Brien, Bass, and Merson

Table 1) .. 87

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACRONYMS AND ABBREVIATIONS

ADO Assistant Duty Officer
AIS Automatic Identification System
AMVER Automated Merchant Vessel Reporting
AOPS Abstract of Operations
BPEL4WS The Business Process Execution Language for Web

Services
BPMN Business Process Modeling Notation
CASP Computer Aided Search Planning
C2 Command and Control
C2CEN Command and Control Engineer Center
CC Command Center
CCPM The Coast Guard Command Center Program Manual
CDM Conceptual Data Model
CDNU Cockpit Display Navigational Unit
CDO Command Duty Officer
CG Coast Guard
CGC Coast Guard Cutter
CGC2 Coast Guard Command and Control
CGDN Coast Guard Data Network
CGMS Coast Guard Message System
CMA Comprehensive Maritime Awareness
CO Commanding Officer
COI Communities of Interest
COPORD Common Operational Picture Operational Requirements

Document
CTO Chief Technical Officer
DHS Department of Homeland Security
DoD Department of Defense
DoDAF DoD Architecture Framework
ELT Emergency Locator Transmitter
eNOAD Electronic Notice of Arrival/Departure
EPIRB Emergency Position Indicating Radiobeacon
FTP File Transfer Protocol
GPS Global Positioning System
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
ICS Incident Command System
IDeA Incremental Development Approach
IP Internet Protocol
IT Information Technology
JAWS Joint Automated Worksheet

 xvi

JC3IEDM Joint Consultation Command & Control Information
Exchange Data Model

JCTD Joint Capability Technology Demonstration
JRCC Joint Rescue Coordination Center
LEDET Law Enforcement Detachement
LEDO Law Enforcement Duty Officer
LNM Local Notice to Mariners
M/V Motor Vessel
MIEM Maritime Information Exchange Model
MISLE Marine Information for Safety and Law Enforcement
MHS-OPS Maritime Homeland Security Operational Planning System
MSRT Maritime Security Response Team
MSST Maritime Safety and Security Team
NCO Network Centric Operations
NIEM National Information Exchange Model
NMS Network Management System
NPS Naval Postgraduate School
OPAREA Operational Area
OPCEN Operations Center
OPTEMPO Operational Tempo
OSC Operations Systems Center
PAWSS Ports and Waterways Safety System
PLB Personal Locator Beacons
PKI Public Key Infrastructure
QoS Quality of Service
R21 Rescue 21
R21DF Rescue 21 Direction Finder
SAML Security Assertion Markup Language
SANS Ship Arrival and Notification System
SAR Search And Rescue
SARSAT SAR Satellite
SDL Service Development Loop
SEI Software Engineering Institute
SITREP Situation Report
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SPS Search Pattern Service
TCP Transmit Control Protocol
TISCOM Telecommunications and Information Systems Command
UDDI Universal Description Discovery and Integration
USCGC United States Coast Guard Cutter
USMCC United States Mission Control Center
VBST Vessel Boarding and Search Team

 xvii

VHF Very High Frequency
VMS Vessel Monitoring System
VTS Vessel Traffic Service
W3C World Wide Web Consortium
WAN Wide Area Network
WSDL Web Service Description Language
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol
XO Executive Officer
XSD XML Schema Documents
XSLT Extensible Stylesheet Language Transformation

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

We would like to thank Dr. Rick Hayes-Roth, Rex Buddenberg, Dr. Alex

Bordetsky, and Glenn Cook for your dedication and devotion to our educational

journey. Your support and direction made our experience at the Naval

Postgraduate School worthwhile. We both feel fortunate to have been your

students.

LCDR Rusty Dash

To Danielle, this wouldn’t exist without you. Thanks for giving way more

than you received.

To Bradley, Bryce, and Brendon, one day you might actually peruse this

thesis thing and wonder why it stole so much time otherwise reserved for us.

Thanks for being great boys and giving me time to get this thesis done.

To Brian Rideout and the various members of Group TLR, thanks for the

adventures in class projects and academic excellence. Friends like you made

my time here “a awesome” experience.

To Bob, my thesis partner, thanks for such a great thesis topic. It meant a

lot to have another Coastie to go through NPS with. Oh, and one more thing, I

just found another great article that we can use in chapter…

LT Bob Creigh

To my wife Jill, thank you for supporting me throughout my career and

during this time at NPS. Your love and devotion have not gone unnoticed.

To Andy and Heather, for all of the time I spent on this instead of with you

doing things that we love to do.

To Rusty, you provided me almost as much education during my time here

as the faculty. Thank you for all your effort toward writing this thesis and for being

a good and trusted friend.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND
The roles and missions of the United States Coast Guard have changed

significantly from the vision of its founding father, Alexander Hamilton, who stated

that “A few armed vessels, judiciously stationed at the entrances of our ports,

might at a small expense be made useful sentinels of the laws.” (Hamilton 1787)

Today’s Coast Guard is a dynamic, multi-mission maritime organization

dedicated to protecting the lives, safety, and security of the American people.

This service is a unique combination of military combatant, law enforcement

authority, and humanitarian do-gooder that the government and American public

have come to expect will always be “Semper Paratus.” As such, it has been

assigned a diverse set of strategic goals and missions that require partnership

and interoperability with many local, state, federal, and international agencies, as

well as the maritime industry and foreign governments. The five strategic goals

and twenty major missions of the United States Coast Guard are:

Maritime Safety – Eliminate deaths, injuries, and property damage

associated with maritime transportation, fishing, and recreational boating. The

specific missions are Search and Rescue (SAR), Marine Safety Program,

Recreational Boating Safety, and the International Ice Patrol.

National Defense – Defend the nation as one of the five U.S. armed

services. The specific missions include Defense Readiness, Homeland Security,

Ports Waterways and Coastal Security, and Polar Icebreaking.

Maritime Security – Protect America's maritime borders from all intrusions

by: (a) halting the flow of illegal drugs, aliens, and contraband into the United

States through maritime routes; (b) preventing illegal fishing; and (c) suppressing

violations of federal law in the maritime arena. The specific missions are Illegal

Drug Interdiction, Migrant Interdiction, Living Marine Resource Protection,

 2

General Maritime Law Enforcement, Exclusive Economic Zone Enforcement, and

Treaty Enforcement.

Maritime Mobility – Facilitate maritime commerce and eliminate

interruptions and impediments to the efficient and economical movement of

goods and people, while maximizing recreational access to and enjoyment of the

water. The specific missions are Aids to Navigation, Icebreaking Operations, and

Vessel Traffic/Waterways Management.

Protection of Natural Resources – Eliminate environmental damage and

the degradation of natural resources associated with maritime transportation,

fishing, and recreational boating. The specific missions include Marine

Environmental Science, Foreign Vessel Inspections, and Marine Pollution

Response and Enforcement. (“Missions”)

Coastguardsmen are policemen, sailors, warriors, humanitarians,

regulators, stewards of the environment, diplomats, and guardians of the coast

while performing those missions. (America’s Maritime Guardian 2) Each of

those duties has unique requirements for the type, amount, and complexity of

information that must be managed. This information diversity is plainly visible

when one considers the list of activities and accomplishments during an “average

Coast Guard day.”

Every day the U.S. Coast Guard:

• Conducts 82 search and rescue cases

• Saves 15 lives

• Assists 114 people in distress

• Protects $4.9 million in property

• Boards 202 vessels of law enforcement interest

• Interdicts 26 illegal migrants at sea

• Seizes $12.4 million worth of illegal drugs

 3

• Conducts 23 waterfront facility safety or security inspections

• Enforces 129 security zones

• Monitors the transit of 2,557 commercial ships through U.S. ports

• Boards 122 large vessels for port safety checks

• Boards 4 “high interest” vessels

• Investigates 20 vessel casualties involving collisions, allisions and

groundings

• Responds to 11 oil and hazardous chemical spills

• Conducts 317 vessel safety checks

• Teaches 63 boating safety courses

• Conducts 19 commercial fishing vessel safety exams

• Processes 280 mariner licenses and documents

• Services 140 aids to navigation

 (“Average Day”)

With such a high volume of daily activity in so many different mission

areas, the Coast Guard faces a daunting information and communication

problem. It needs to efficiently process and effectively utilize large amounts of

varied information that typically originates from unplanned events. Unfortunately

the Coast Guard is burdened with an information technology (IT) infrastructure

composed of standalone applications and communications networks that lack

interoperability. The combination of heterogeneous missions, applications, and

networks creates information sharing problems within the Coast Guard and with

external entities that result in operational inefficiency and ineffectiveness. In

addition the Coast Guard has become an integral part of the rapidly evolving,

extended homeland security enterprise that spans multiple federal departments

and reaches out to many state and local government agencies. This means the

 4

information sharing needs of the Coast Guard are ever growing and will be

increasingly influenced by its partners, both within the federal government and

beyond. The September 11th 2001 terrorist attacks and Hurricane Katrina

highlighted weaknesses in our nation’s intra- and inter-agency information

sharing and “demonstrated the critical need for developing improved (distributed,

shared and fault-tolerant) enterprise governance systems that are at once stand-

alone and interoperable.” (Bayne 14) In response to these challenges, the Coast

Guard must develop a credible architecture and then adopt a flexible, rapid, and

incremental implementation process.

B. SOFTWARE ARCHITECTURE
Enterprise level software architectures connect business goals and

computer systems by describing the structures of the software elements,

including the externally visible properties of the elements, and the relationships

and interactions between them. “Externally visible” properties refers to those

assumptions that other elements can make about the behavior of an element,

such as its provided services and performance characteristics. The details of

elements that have solely to do with internal implementation are by definition not

architectural. The architecture provides the fundamental organization of the

system and the principles that govern its design and evolution. (“Published

Software Architecture Definitions”)

Successful software architectures are designed to meet both functional

and quality attribute requirements. The functional requirements define what the

software components do, and these are typically written in brief scenarios called

use cases. An example of a functional requirement is: given the necessary six

input parameters (Commence Search Point, Length, Width, Major Axis, Track

Spacing, First Turn), calculate the waypoints for a parallel search pattern as

defined by the National SAR Manual and output them in Extensible Markup

Language (XML) format that complies with the Joint Consultation Command &

Control Information Exchange Data Model (JC3IEDM) schema. Quality attributes

are the benchmarks that describe a system’s intended behavior within the

 5

environment for which it was built. They provide the means for measuring the

fitness and suitability of a product. Quality attribute requirements such as those

for performance, security, modifiability, reliability, and usability have a significant

influence on the software architecture of a system. (“Software Architecture

Glossary”)

1. Software Architecture for Command and Control
The Coast Guard does not have a viable enterprise level software

architecture that meets its current needs, let alone its rapidly evolving future

needs. It is burdened with a collection of “stovepipe systems” that were

individually created to address specific functional needs, without consideration

or design for current functionality and quality-attribute requirements. Each

stovepipe embeds the semantics of the data and the processing logic (functions)

within the system. This configuration prevents other programs from accessing

either the data or functions, effectively trapping them within the stovepipe.

Because it is extremely difficult to integrate stovepipes, new systems often repeat

data and functions which produces two serious problems. The first problem is

that data about the same object (vessel, report, etc.) often differs from one

stovepipe to the next, which creates confusion and uncertainty for the users. The

second problem is the limitation in the number of systems a human can

simultaneously utilize. Relevant data and useful functionality may go unused

because they are too difficult to access and not all users have access to every

stovepipe. To solve this problem the Coast Guard must integrate the data and

functionality from the stovepipes in an new architecture that supports its rapidly

evolving needs.

This thesis will focus on the development of a software architecture for

Coast Guard Command and Control. Coast Guard Publication 1 defines

Command and Control as “the exercise of authority and direction by a properly

designated commander over assigned and attached forces in the

accomplishment of the mission.” This includes planning, directing, coordinating,

and controlling forces and operations to accomplish the mission. (America’s

 6

Maritime Guardian 60) Many theories about command and control break the

decision making process into sense-decide-act stages that form an iterative loop.

Dr. Rick Hayes-Roth further refines this theory by defining efficient thought by

intelligent beings (person, organization, system). The functions of efficient

thinking divide into eight steps, each supported by a world model that represents

the intelligent being’s understanding of how things work. “The world model

provides the knowledge that an intelligent being uses to interpret events,

generate candidate plans for improving situations, and select the most attractive

candidates for execution.” (Hayes-Roth, Hyper-beings 58)

Figure 1. Efficient Thought (From: Hayes-Roth Hyper-beings Fig 2.)

The eight steps of efficient thought are numbered in a typical sequence,

though in most complex organizations all eight steps operate in parallel. “The

intelligent being (1) observes what’s happening in the environment, (2) assesses

the situation for significant threats and opportunities, (3) determines what

changes are desirable, (4) generates candidate plans for making those changes,

(5) projects the likely outcomes of those plans, (6) selects the best plan, and (7)

 7

communicates that plan to key parties and implements it. Throughout, the

intelligent being (8) validates and improves its model. The model supports all

eight activities, although only steps 1, 2, 7 and 8 directly update and modify the

model.” (Hayes-Roth Hyper-beings 59) Software architecture for command and

control needs to support the use of these eight steps.

2. Coast Guard Command and Control Architecture
The Coast Guard Command Center Program Manual (CCPM) describes a

system model that depicts the fundamental components of command center

performance as seven capabilities that produce three outputs. This system

model relies upon the interaction between the capabilities of planning, execution,

information collection, information processing, information sharing, awareness,

and assessment to produce information management, situational awareness,

and command and control. While not identical, many similarities exist between

the Coast Guard’s model and Dr. Hayes-Roth’s efficient thought process

described above.

Figure 2. Coast Guard Command Center System Model (From: Command

Center Program Manual Figure 1-2-1)

 8

The authors of the CCPM use a triangle of triangles to represent each of

the seven capabilities in the system model. Each “capability” triangle is

composed of three smaller triangles; a blue one representing agents (human and

software) to perform tasks, a green one representing infrastructure (computers,

sensors, etc.), and a red one representing doctrine. The manual lists 35 different

stovepipe software applications watchstanders can use to perform their duties.

However, the system model does not describe how these elements function and

interact to produce the required outputs. Absent this critical analysis and

documentation, the current system model will never reliably produce the desired

results.

Clearly the Coast Guard needs to find new and better ways of managing

information and providing capabilities in response to quickly changing needs. It

needs to design a component-based architecture that provides the necessary

functionality with the required quality attributes. The Coast Guard will always

have limited resources and its command and control requirements will continue

to change over time. Therefore, any new architecture must facilitate integration

with legacy systems in a way that reuses existing assets and allows flexible

reconfiguration of both existing and new assets as needed. The architecture

should also enable an evolution from the current state to required functionality

that delivers value at each step along the way.

3. Service-Oriented Architecture (SOA)
The Commandant of the Coast Guard has mandated the implementation

of a Service-Oriented Architecture to “better serve the needs of all our internal

and external customers.” (Allen) The SOA methodology will supposedly enable

the Coast Guard to reduce the expense of integration, increase asset reuse, and

increase business (organizational) agility. SOA encapsulates the distinct

functions contained in enterprise applications into loosely-coupled, interoperable,

standards-based services that interact via a common communications protocol.

“A service is an implementation of a well-defined piece of business functionality,

with a published interface that is discoverable and can be used by service

 9

consumers when building different applications and business processes.”

(Obrien 1) These services are combined and reused to meet the requirements of

business processes and software users.

The Coast Guard does not have resources to simultaneously redevelop

legacy system functionality and implement the new elements of SOA. The rich

capabilities contained within legacy Command and Control (C2) applications can

be reused in an SOA with a “wrapper.” This approach provides a viable

economic option, because it avoids re-writing the existing software. Once

service enabled, these legacy components can remain operationally intact within

the current architecture and be made available as services at the same time.

“SOAs are flexible because each service encapsulates the underlying platforms

and technologies that support it. The services provided at the enterprise level

are therefore agnostic to those specific platforms and technologies.” (Lau 11)

Unfortunately SOA does not provide the perfect solution to all the Coast

Guard’s information sharing and application integration needs. SOA means

different things to different people and the Coast Guard needs to have a clear

understanding of the differing technologies, standards, and implementation

methods. Because SOA holds so much promise, all the major software

manufacturers and vendors are promoting their support with some directly

involved in developing open standards. As a result, every major development

platform now officially supports the creation of “service-oriented solutions.” (“The

SOA Vision”) This competition between vendors with different standards must be

approached with caution as it may actually make it more difficult to successfully

develop a meaningful SOA to meet the Coast Guard’s needs. The next chapter

will examine the standards and technologies used to implement SOAs with

specific recommendations.

C. THESIS QUESTIONS
This thesis aims to provide sound, supported, informative, and valuable

answers to Coast Guard IT decision-makers for the following two questions.

 10

1. How Can the Coast Guard Implement a Service-Oriented
Architecture for Command and Control?

Traditional descriptions of software architectures make it difficult to identify

and understand the trade-offs between quality attributes that are inherent in the

design. We will use multiple scenarios and use cases, in addition to diagrams

and functionality requirements, to make these critical issues easier to

understand. Defining the architecture in terms of the functionality and quality

attribute levels of each component should allow an auditor to determine the

architecture’s validity. Our answer to this question does not create a complete

architecture, however it does establish an effective starting point for the Coast

Guard.

2. What is the Optimal Implementation Plan for this Coast Guard
Command and Control (CGC2) SOA?

Almost all large scale software and IT system projects fail, so a “big bang”

approach to create this SOA should be avoided. Because the entire SOA will not

be created at the same time, the Coast Guard needs a process that will deliver

value in the form of usable capabilities in an incremental and iterative manner.

This sequence of capabilities should determine how the components and

architecture evolve. Our proposed iterative method will include an evaluation of

the system requirements, architecture, and implementation plan during each

repetition of the cycle that guarantees continuous improvement. This plan will

also incorporate industry best practices to anticipate and address predictable

problems.

D. THESIS ORGANIZATION
Chapter I has defined the problem and introduced the basic approach for

our solution. The remaining chapters of this thesis are organized as follows:

• Chapter II provides a synopsis of SOA components and standards.

• Chapter III describes an SOA for Coast Guard Command and

Control.

• Chapter IV proposes an Implementation Plan for that architecture.

 11

• Chapter V contains our conclusions and recommendations for

future research.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

II. SOA BACKGROUND INFORMATION

A. SERVICES ORIENTED ARCHITECTURE
This chapter provides background information about SOA, Web services

standards, and data models for readers new to the subject so they can grasp the

material presented in the remaining chapters.

Service-Oriented Architecture is a software design methodology that uses

loosely-coupled services to perform business functions or processes. These

services communicate using well-defined standards across a network. Section C

describes services and service-oriented design principles in detail. Services

send XML-formatted messages that relay information structured in accordance

with an accepted data model. Section B defines the basic XML terms and

Section E discusses data models.

SOA proponents believe it can help businesses (and government

agencies) respond more quickly and cost effectively to changing environmental

conditions. “All major software manufacturers and vendors promote support for

SOA – some even through direct involvement in the development of open

standards. As a result, every major development platform now officially supports

the creation of service-oriented solutions.” (“The SOA Vision”) While that

statement sounds like a boon for businesses and government organizations

considering an SOA, competing standards and vendors can actually make it

more difficult to separate the marketing hype from the truly valuable technology

to determine a path to success. We outline the core SOA standards in Section

D. This chapter concludes with an example Web service in Section E.

B. XML
The Extensible Markup Language (XML) is an open standard for

exchanging structured documents and data over the Internet. Authors and

“…designers create their own customized tags, enabling the definition,

transmission, validation, and interpretation of data between applications and

between organizations.” (“XML”) A schema provides a framework for naming

 14

and storing different elements of information. XML Schema Documents (XSD)

use XML to describe the schema for a certain kind of XML document or

message. An XML message recipient can use the appropriate XSD to verify the

message’s data structure and format using a process called validation. Using

XML to carry both the meta data and the data in the same message, composed

using an agreed upon schema, begins to solve the data interoperability problem.

Because XML documents contain standard structure with the content, they

can be easily converted to comply with another XML schema. XML

Transformation documents, written in the Extensible Stylesheet Language

Transformation (XSLT) language, perform this function. For example, we may

have one XSLT that reformats an XML message as a Web page, another that

outputs a plain-text document for printing, and a third that outputs data formatted

as expected by a legacy application. To summarize, we use XML to “tag”

content in a message, XSD to define the structure of the tags, and XSLT to

reorganize the data based on the needs of a specific consumer.

C. SERVICES
“A service is an implementation of a well-defined piece of business

functionality, with a published interface that is discoverable and can be used by

service consumers when building different applications and business processes.”

(O’Brien, Bass, and Merson 1) Web services differ from generic services

because they use SOAP-formatted XML envelopes and have their interfaces

described by a Web Service Description Language (WSDL) document. Section

D defines both SOAP and WSDL. We use the terms service and Web service

interchangeably throughout this thesis. The decision to use one or the other will

be made by the architecture team for each service, when it designs the SOA.

1. Common Principles of Service Orientation
The authors of a recent Software Engineering Institute report on SOA

provide the following service oriented design principles. They establish a unique

design approach for building Web services for SOA. “When applied, these

 15

principles succeed in standardizing Web services while preserving their loosely

coupled relationships.” (Erl 53)

Services are reusable. Regardless of whether immediate reuse
opportunities exist, services are designed to support potential
reuse.

Services share a formal contract. In order for them to interact, they
need not share anything but a formal contract that defines the
terms of information exchange and any supplemental service
description information.

Services are loosely coupled. They must be designed to interact
on a loosely coupled basis, and they must maintain this state of
loose coupling. This is closely related to service abstraction and
service autonomy. [Loosely coupled frameworks allow individual
nodes in a distributed system to change without affecting or
requiring change in any other part of the system.]

Services abstract underlying logic. The only part of a service that is
visible to the outside world is what is exposed via the service’s
description and formal contract. The underlying logic (beyond what
is expressed in the description and formal contract) is invisible and
irrelevant to service requestors.

Services are composable. They may compose other services.
This possibility allows logic to be represented at different levels of
granularity and promotes reusability and the creation of abstraction
layers.

Services are autonomous. The logic governed by a service resides
within an explicit boundary. The service has complete autonomy
within this boundary and is not dependent on other services for the
execution of this governance.

Services are stateless. They should not be required to manage
state information, since that can impede their ability to remain
loosely coupled. Services should be designed to maximize
statelessness even if that means deferring state management
elsewhere.

Services are discoverable. They should allow their descriptions to
be discovered and understood by humans and service users who
may be able to make use of the services’ logic. Service discovery
can be facilitated by the use of a directory provider, or, if the

 16

address of the service is known during implementation, the address
can be hard-coded into the user’s software during implementation.

Services have a network-addressable interface. Service requestors
must be able to invoke a service across the network. When a
service user and service provider are on the same machine, it may
be possible to access the service through a local interface and not
through the network. However, the service must also support
remote requests.

Services are location transparent. Service requestors do not have
to access a service using its absolute network address.
Requestors dynamically discover the location of a service looking
up a registry. This feature allows services to move from one
location to another without affecting the requestors. (O’Brien, Bass,
and Merson 3-4)

2. Wrappers
Architects often want to reuse existing applications and databases in their

SOAs. Unfortunately almost all legacy systems cannot operate in the service

environment in their current configuration. Developers solve this problem by

creating a wrapper, special software that resides between the legacy application

and the SOA. The wrapper exposes the legacy application’s functionality or data

to the SOA as a service. The wrapper provides all the security, quality of service,

and service orientation principles that any other service in the SOA has. The

following quote illustrates the benefits wrappers can provide:

For example, at telecom company Verizon, the service called "get
CSR" (get customer service record) is a complex jumble of software
actions and data extractions that uses Verizon's integration
infrastructure to access more than 25 systems in as many as four
data centers across the country. Before building the "get CSR"
service, Verizon developers who needed that critical lump of data
would have to build links to all 25 systems—adding their own links
on top of the complex web of links already hanging off the popular
systems. But with the "get CSR" service sitting in a central
repository on Verizon's intranet, those developers can now use the
simple object access protocol (SOAP) to build a single link to the
carefully crafted interface that wraps around the service. Those 25
systems immediately line up and march, sending customer
information to the new application and saving developers months,

 17

even years, of development time each time they use the service.
(“ABCs of SOA”)

Wrappers provide an excellent way to reuse applications already

delivering business value. However, proper IT business alignment is necessary

to ensure proper enforcement of control and management policies. Randomly

wrapping services can lead to security and performance problems inside and

outside the organization. The Web service wrappers provide a “great tactical

approach” for SOA development, but they are not a panacea. (“Web Services

Wrapper”) We can not simply wrap all our legacy systems and declare SOA

victory. Ultimately, SOA aims to unlock the application logic and data from the

legacy systems, so they exist as native services within the SOA. This process

frees them to operate at their logical place in the business processes and

workflows, without the artificial constraints of the legacy systems.

D. WEB SERVICE STACK
The Web services stack shows the collection of computer networking

protocols that define, locate, implement, and make Web services interact with

each other. The World Wide Web Consortium’s Web Services Architecture

Working Group defined technical standards to ensure interoperability for SOAs.

The Working Group divided these standards into the following six areas:

processes, descriptions, messages, communications, security and management:

Figure 3 shows a modified version of their Web Services Architecture Stack

diagram.

 18

Figure 3. Web Services Architecture Stack (After “Web Services Architecture”

Figure 3-1)

1. Process Layer
The Process layer describes how providers publish services and

requestors/consumers discover them. The Process layer utilizes the following

standards:

• Universal Description Discovery and Integration (UDDI): UDDI is a
directory that allows businesses to register their services so that the
consumers can find them.

• WS-Coordination: This specification “describes an extensible
framework for providing protocols that coordinate the actions of
distributed applications. Such coordination protocols are used to
support a number of applications, including those that need to
reach consistent agreement on the outcome of distributed
activities.” (“WS-Coordination”)

2. Description Layer
The Description layer describes how the service provider communicates

the specifications for invoking the Web service to the service requestor. The

Description layer utilizes the following standards:

 19

• Web Service Description Language (WSDL): An XML document
that describes the interfaces and methods that a service provides.

3. Messages Layer
The Messages layer describes how the services pass information in the

form of a message. The Messages layer utilizes the following standards:

• Simple Object Access Protocol (SOAP): SOAP is a protocol used to
exchange messages between systems in XML format. SOAP has
become the de-facto standard protocol for Web services.

• WS-ReliableMessaging: This specification describes a protocol that
allows messages to be transferred reliably between nodes in the
presence of software component, system, or network failures.
(“WS-ReliableMessaging”)

• WS-Addressing: This specification “provides transport-neutral
mechanisms to address Web services and messages. Specifically,
this specification defines XML elements to identify Web service
endpoints and to secure end-to-end endpoint identification in
messages. This specification enables messaging systems to
support message transmission through networks that include
processing nodes such as endpoint managers, firewalls, and
gateways in a transport-neutral manner.” (“WS-Addressing”)

• WS-Notification: “The Event-driven, or Notification-based,
interaction pattern is a commonly used pattern for inter-object
communications. Examples exist in many domains, for example in
publish/subscribe systems provided by Message Oriented
Middleware vendors, or in system and device management
domains.” (“WS-Notification”)

• WS-Eventing: “This specification describes a protocol that allows
Web services to subscribe to or accept subscriptions for event
notification messages.” (“WS-Eventing”)

4. Communications Layer
The Communications layer describes how messages are physically

transported across the network. The Communications layer utilizes the following

Internet protocols:

• Hypertext Transfer Protocol (HTTP): HTTP is the standard
mechanism for retrieving Web pages and associated content. It can
also be used for transmitting data from the client to the server.

• Simple Mail Transfer Protocol (SMTP): SMTP is the standard
mechanism for sending email from the client to the server.

 20

• File Transfer Protocol (FTP): FTP is primarily used for transferring
files from one computer to another over a TCP/IP network.

5. Security
Security occurs at all layers in the stack and it provides authenticity,

integrity, confidentiality, and non-repudiation. Security utilizes the following

standards:

• WS-Security: “This specification describes enhancements to SOAP
messaging to provide message integrity and confidentiality. The
specified mechanisms can be used to accommodate a wide variety
of security models and encryption technologies.” (“WS-Security”)

• WS-SecurityPolicy: WS-SecurityPolicy is designed to work with the
general Web Services framework including WSDL service
descriptions, UDDI businessServices and bindingTemplates and
SOAP message structure and message processing model, and
WS-SecurityPolicy should be applicable to any version of SOAP.
(“WS-SecurityPolicy”)

• WS-SecureConversation: "This specification defines extensions
that build on WS-Security to provide a framework for requesting
and issuing security tokens, and to broker trust relationships.”
(“WS-SecureConversation”)

• WS-Trust: The goal of WS-Trust is to enable applications to
construct trusted SOAP message exchanges. This trust is
represented through the exchange and brokering of security
tokens. This specification provides a protocol agnostic way to issue,
renew, and validate these security tokens. (“WS-Trust”)

• WS-Federation: A specification, by IBM and Microsoft, for
standardizing the way companies share user and machine
identities among disparate authentication and authorization
systems spread across corporate boundaries. (“WS-Federation”)

• SAML: “An XML-based framework for communicating user
authentication, entitlement, and attribute information. As its name
suggests, SAML allows business entities to make assertions
regarding the identity, attributes, and entitlements of a subject (an
entity that is often a human user) to other entities, such as a partner
company or another enterprise application.” (“SAML”)

6. Management
Management, like Security, occurs across all layers in the stack.

Management provides methods for monitoring and managing services and

business processes. Management utilizes the following standards:

 21

• WS-Manageability: “specification introduces the general concepts
of a manageability model in terms of manageability topics and the
aspects used to define them.” (“WS-Manageability”)

• Business Process Execution Language for Web Services
(BPEL4WS): “The Business Process Execution Language for Web
Services provides a comprehensive syntax for describing business
workflow logic. It allows for the creation of abstract processes that
can describe business protocols, as well as executable processes
that can be compiled into runtime scripts” (Erl 100) The Business
Process Modeling Notation (BPMN) provides a standardized
graphical notation for drawing business processes in a workflow.
Software tools easily translate BMPN models into BPEL4WS files.

E. DATA MODELS AND INFORMATION EXCHANGE
Semantics define a language’s structure and meaning. For the services in

an SOA to be interoperable, the services exchanging messages must understand

the semantics of the data. Therefore, we need an efficient way to establish an

agreed upon structure and meaning for the data elements in our XML formatted

messages. Conceptual data models and XML schemas accomplish this.

Conceptual data models (CDM) show the overall organizational data

structure without considering the ability to implement the structure. SOAs

employ CDMs to avoid the point-to-point mapping problem encountered when

sharing data between systems. For example, if we have N systems in our SOA

and we want them all to share data with each other, point-to-point mapping

requires N(N-1) translations between them which is approximately N2. Utilizing a

CDM requires 2N translations; one for each system to the CDM and one for the

CDM back to each system, and this number is usually much smaller than N2.

Interestingly, Appendix D to the Coast Guard’s Common Operational Picture

Operational Requirements Document (COPORD) shows a matrix proposing

point-to-point mapping between nine existing stovepipe systems. The 72

transformations required in the diagram could be reduced to 18, a reduction of

75%, through appropriate use of a CDM. The Coast Guard has not yet

implemented a command and control CDM.

 22

Creating a CDM has one negative aspect. The data modeling and related

XML schema generation efforts increase the start-up cost. XML schemas

describe an XML document’s structure and validate messages in the SOA. “This

industry best practice requires work up front, but results in a scalable and flexible

solution. The instantiation of a canonical XML Schema based on that model

provides a consistent target … to which each endpoint system maps.” (Hutchins)

Conceptual data modeling benefits outweigh their costs, in a way similar to the

payback-to-cost provided by the Incremental Evolutionary approach in Chapter

4’s Figure 22.

F. EXAMPLE WEB SERVICE
1. Search Pattern Service (SPS) Description
We created the SPS to provide an example. It accepts search pattern

parameters and returns the latitude and longitude points for the waypoints along

the search. Coast Guard readers may initially dismiss the need for a service to

generate search patterns. We already have many different systems capable of

doing this, and several provide much more robust functionality. However, in

addition to illustrating what a service can do, this particular example highlights a

more important point. The Coast Guard has recreated the same functionality in a

dozen different systems, but we can’t take a search pattern generated by the

Sector Command Duty Officer (CDO) and automatically import it into the

navigation system on a patrol boat.

Implementing functionality as a service means that you only need to build

it once. Thereafter, anyone can use it anywhere in the SOA. Service

modifications only happen in one location, not in each separate system. The

SPS can also have multiple interfaces so that many different applications and

devices can use it. This service calculates the same search pattern coordinates

for every user. The Sector CDO sees the exact same pattern at his computer

workstation that the coxswain on the small boat sees on his SINS equipment.

The C-130 sees the same pattern on his Cockpit Display Navigational Unit

(CDNU) as the District Commander using a smart phone. However, perhaps we

 23

don’t want it to calculate the same pattern for every user. The interface can also

make the service context-sensitive. For example, the small boat interface would

generate search patterns that avoided rocky shoals but the helicopter interface

would not.

2. Current Features
The SPS accepts the parameters shown in Table 1 then calculates and

returns a series of latitude/longitude pairs. Appendix C contains the SPS source

code. It currently performs three search patterns:

• Parallel Search

• Sector Search

• Expanding Square Search

Search Pattern Parallel Sector Expanding Square
Latitude x x x

Longitude x x x
Length x
Width x

Track Spacing x x
Major Axis x

Radius x
Theta x

Initial Track x x
Cycles x

Table 1. Search Pattern Service Parameters

3. Potential Future Features
The initial description mentioned one potential feature, adjusting the

pattern based on the asset type. It could also access current weather and sea

conditions, or receive updated information about the target, and then dynamically

adjust the search pattern parameters accordingly. Couple this capability with the

integrated navigation systems in some of the Coast Guard’s assets and it

becomes possible to improve mission effectiveness. Currently, changes to

search patterns require the coxswain or pilot to manually stop the current search

 24

and enter a new one with the updated information. Dynamic updates allow the

people performing the mission to keep their eyes and attention focused on

finding the survivor rather than buried in a navigation computer entering new

coordinates.

4. Java-based Client Application
We created a multi-platform Java-based client to demonstrate this

service’s functionality and output. Appendix D contains the Java client source

code. The user enters parameters into the form boxes and initiates the service

by pressing the “Generate” button. This client initiates a request to the service

and displays the result in the “Results” text box. Figure 4 shows the Java client

in the sector search mode. Note that the latitude and longitude coordinates are

in degrees with decimals. If we needed positions in degrees, minutes, seconds

that conversion could be built into either the client application or the service itself.

This client would probably not exist within the Coast Guard SOA. Most services

do not need a dedicated user client. Integrated user interfaces, called composite

applications, fuse the functionality and output of many services.

 25

Figure 4. Java Client – Sector Search

G. CONCLUSION
This chapter defined important terms, introduced relevant concepts,

identified applicable industry standards, and summarized SOA principles.

Designing and building an SOA requires appropriate data standardization and

modeling into XML schemas, adhering to the important industry standards to

appropriately implement the technology needed to support the layers of the Web

services stack. The next chapter defines an SOA for Coast Guard command and

control to answer our first thesis question.

 26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

III. DRAFT USCG COMMAND AND CONTROL SERVICE
ORIENTED ARCHITECTURE (CGC2 SOA)

A. INTRODUCTION
This chapter provides the answer to our first thesis question, “How can the

Coast Guard implement a Service-Oriented Architecture for Command and

Control?” We begin with three diagrams in Section B; one to introduce the

functional areas, one to describe the network nodes, and one to illustrate the

systems interfaces. We then continue with a scenario in Section C that

demonstrates the CGC2 SOA in action. Section D further describes the

functional areas and identifies services to perform them. Section E discusses the

quality attributes that significantly influence the architecture. Section F outlines

the conceptual data model required to exchange data within the SOA. Finally,

Section G proposes a product line architecture for producing composite

applications. The answer to our first thesis question does not create a complete

architecture. However it does establish an effective starting point for the Coast

Guard.

B. ARCHITECTURAL VIEWS
“Software architecture represents a common abstraction of a system that

stakeholders can use as a basis for creating mutual understanding, forming

consensus, and communicating with each other.” (Clements, Kazman, Klien, 2)

Diagrams can elegantly summarize complex material, clearly showing details that

otherwise get lost in lengthy text descriptions. Architectural views are diagrams

that provide a mechanism for separating issues and concerns when analyzing or

building an architecture. “They let us consider an architecture from different

perspectives.” (Clements, Kazman, Klien, 8) The Department of Defense (DoD)

uses a framework that “defines a common approach for DoD architecture

description, development, presentation, and integration” called the DoD

Architecture Framework. (DoDAF Deskbook 1-1) We created our diagrams as

DoDAF “views” in order to facilitate comparison between our CGC2 SOA and

 28

existing DoD and Coast Guard command and control systems. The following

diagrams describe our proposed CGC2 SOA.

1. High Level Operational Concept (OV-1)
The OV-1 displays the primary CGC2 SOA actors. Participants include

Coast Guard units, as well as federal, state and local governments and non-

governmental agencies (e.g., harbor pilot associations and shipping companies).

The five small ovals in Figure 5 represent the CGC2 SOA functional areas. The

large blue oval represents the combined command and control effect those

functions produce, making the whole greater than the sum of the parts.

Figure 5. CGC2 SOA Functional Areas and Actors (OV-1)

2. Operational Node Connectivity Description (OV-2)
The OV-2 shows all nodes that use, produce and consume information

from services throughout the organization. These services send and receive

messages formatted in the Extensible Markup Language (XML). The existing

Coast Guard Data Network (CGDN) provides connectivity between network

nodes, but does not reach mobile assets (e.g., aircraft and small boats).

 29

Appendix B lists our proposed CGDN and communications systems

requirements.

Figure 6. CGC2 SOA Operational Node Connectivity (OV-2)

3. Systems Interface Description (SV-1)
The SV-1 identifies the interfaces between systems and system nodes.

The diagram in Figure 7 shows the relationship between legacy systems,

elemental and composed services, and the composite applications that utilize

them. The gray horizontal boxes abstract many complex implementation details.

Although each legacy system has unique requirements, SOA allows service

providers and consumers to utilize any technology that supports the appropriate

standards. While extremely important, these non-architectural issues will not be

addressed in this thesis.

 30

Figure 7. CGC2 SOA Systems Interface Description (SV-1)

The yellow boxes at the bottom of Figure 7 represent legacy applications

that must be “service-enabled.” To do this, software called wrappers change the

existing applications’ interfaces without affecting current functionality. Wrappers

expose the business logic and data from legacy applications as services, which

can be invoked (used) within the SOA. The wrappers also perform data

transformation between the legacy application and the SOA’s context data

model, which will be explained in Section G. Wrapping multiple legacy

 31

applications creates a pool of fine-grained services. The green shapes in Figure

7 represent all the fine-grained services. Each one typically performs a single

business logic or data access function. Five different fine-grained service

examples are: get local assets (e.g., cutters, boats, aircraft) currently in Alpha or

Bravo status, get asset positions, get OPAREA weather, filter asset list based on

weather limits, and sort asset list based on distance from present location to

target.

As they pass through the middle gray box, the fine-grained services are

assembled into processes, or workflows, that perform complex business

functions. These processes or assemblies are known as coarse-grained

services. The orange boxes in Figure 7 represent the five functional areas that

logically group the course-grained services. The fine-grained services described

in the paragraph above could be linked together to form a “nominate asset”

service under Planning. This service would take a geographic position, perform

those fine-grained services, and return a list containing available assets.

Changing the fine-grained services’ input parameters can customize this coarse-

grained service. For example, the “nominate surface” service would include

cutters, boats, and Automated Merchant Vessel Reporting (AMVER) vessels, but

the “nominate air” service would only return aircraft. Items from the coarse-

grained services inventory can be reused as needed anywhere in the CGC2

SOA. In this way, we build functionality once, and then quickly deploy it across

all units and mission areas.

The typical user interacts with the services through a composite

application, shown as blue boxes at the top of Figure 7. A Command Duty

Officer (CDO) needs a different composite application than the Sector

Commander, which will differ from that needed by the district staff officer.

Therefore we want an adaptive and inexpensive way to create a composite

application tailored for each user type. We propose a product line architecture to

create these composite applications in Section G. This will allow the Coast

 32

Guard to quickly create multiple composite application variations needed by

different command and control user groups.

Now that we’ve established how the logic and data from existing legacy

applications is organized (OV-1), distributed (OV-2), and consumed (SV-1), we

will bring it all together in Section C with a scenario showing the CGC2 SOA in

action.

C. SCENARIO
The following scenario illustrates several CGC2 SOA services, marked

with [service name]. Throughout these events, the Sector Command Center

watchstanders use electronic checklists, linked to tasking and communicating

services that prompt users to perform required actions and automate information

dissemination. The system records each service action in it’s log files. In

addition, watchstanders select specific actions to insert into their standard Coast

Guard logs, now kept in electronic form.

10 January 2008 – [View Plan]: Sector San Francisco’s Response

Department staff reviews the Quarterly Operations Schedule for events during

the upcoming week. The entire weekly schedule must be reviewed because

several maintenance and training plans have changed from the time when the

quarter schedule was created. [Monitor Request-Pull: SANS]: The staff also

accesses the local vessel arrival notices to determine Homeland Security

boarding and escort activities. [Create Plan]: The staff creates a weekly

schedule that balances competing demands for operational assets. [Create

Task]: They create detailed tasks that include patrol areas and relevant available

information about the target vessels, cargo and crew members. [Approve Plan]:

The Sector’s command staff electronically reviews the Weekly Schedule and

approves it. [Assign Plan, Assign Tasks, Send Message]: The approval triggers

the system to assign the plan and associated tasks to all units. [View Plan, View

Task]: Any authorized user can access the approved schedule and associated

tasks.

 33

16 January 2008 –The Rescue 21 system detects a Mayday call. [Monitor

Receive-Push: Rescue21DF]: It generates an alert that includes an estimated

position (triangulated from direction finding antennas) and the Mayday call’s

digital recording. The communications watchstander unsuccessfully attempts to

hail the vessel on the radio. [Create Case, Modify Case]: The CDO creates a

SAR case and appends the alert to the case file. The Sector Command Center

watchstanders listen to the digital recording. The position from the Rescue 21

alert does not correspond to what the person says during the Mayday call.

Another fishing vessel radios to report they overhead the distress call. This

vessel reports that the Mayday came from the “LUCKY LADY”, and that they

heard the victim say the vessel had two people on board. [Modify Case]: The

CDO adds this information to the case file. [Report Request]: The CDO queries

available databases for information about vessels with the name “LUCKY LADY.”

[Monitor Receive: SARSAT]: Shortly thereafter the Sector receives a SAR

Satellite (SARSAT) alert from an unregistered Emergency Position Indicating

Radiobeacon (EPIRB) reporting a position 0.5 nautical miles from the Rescue 21

alert position. [Report Generator]: The CDO receives a report back from the

database query listing 3 vessels within the Sector San Francisco area of

responsibility. The system matches the registration number from the EPIRB alert

to a vessel in the database report. [Modify Case]: The CDO inserts the SARSAT

alert and matching vessel record from the database query into the case file. The

CDO does the same for all subsequent information related to the case.

The SAR case creation triggers the nomination of available assets.

[Available Assets]: The Sector CDO receives a list with aircraft, boats, and

cutters. Assets marked green have the appropriate readiness level and ability to

operate in the forecasted environmental conditions. The remaining assets are

marked in yellow or red. [Assign Case]: The CDO selects an HH-65 helicopter

(6501) from AIRSTA San Francisco and a 41’ boat (41001) from Station Golden

Gate. [Create Message, Send Message]: The SAR case and associated

information is sent to both responding units. [Create Report, Create Message,

 34

Send Message]: The CDO sends the Sector commander and staff a summary

report with a hyper-link allowing recipients to view the SAR case file.

[Search Pattern]: The system generates search patterns based on the

reported positions, selected assets, vessel-in-distress size and type, number of

suspected people in the water, and the forecasted weather. [CASP]: These

proposed search patterns include probability of detection information that allows

the CDO to verify their appropriateness. [Create Task]: The CDO creates

specific tasks for the 6501 and 41001 to execute these search patterns. [Assign

Task, Create Message, Send Message]: The CDO sends search pattern tasks to

the responding units in a format that automatically loads into their navigation

display systems. The CDO sends a summary report to the Sector commander

and staff.

[Database Query: AOPS]: 6501 and 41001 dispatch to perform their

assigned tasks and their change in status is automatically recorded. [Monitor

Receive-Push: Blue Force Tracker]: Throughout the following events, the CDO

receives helicopter and boat position and status information. The helicopter

arrives on scene with the vessel, lowers a pump to the vessel, and recovers one

person from the water. [Create Message, Send Message]: 6501 sends patient

data to Sector San Francisco. [Create Message, Send Message]: 6501 departs

to take the victim to a nearby hospital and the CDO forwards the available patient

data to the local emergency medical services. [Create Message, Send

Message]: The CDO sends updated target vessel position information to 41001

during its transit from the station to the scene. [Modify Case]: 41001 locates the

vessel with the remaining person onboard and tows it back to port. The CDO

marks the SAR case complete. [Report Request, Report Aggregator, Report

Generator]: This action triggers several reports, including one that automatically

initiates and populates the reports required from the small boat and aircraft with

the case file information.

17 Jan 2008 – [eNOAD]: a container ship, M/V OCEAN TRADER,

scheduled to arrive at 2300 submits an updated Advanced Notice of

 35

Arrival/Departure reporting they have been delayed 18 hours. [Monitor Receive-

Push: eNOAD, Task Schedule Check]: Sector San Francisco receives the report

from the National Vessel Movement Center. [Create Message, Send Message]:

This ship was already scheduled for boarding and escort into port based on

irregularities in the cargo manifest. Sector San Francisco originally assigned this

task to USCGC TERN and a boarding team from the Vessel Boarding and

Search Team (VBST). [Receive Message]: The CDO receives the alert message

indicating that OCEAN TRADER’s delay impacts an assigned task. The alert

shows a schedule conflict between the new boarding time and TERN’s dockside

maintenance period. It lists two alternatives for the escort duty, USCGC PIKE

and 41010 from Station San Francisco. [Assign Task, Create Message, Send

Message]: The CDO selects PIKE and the service automatically reassigns the

tasks. The service updates the VBST’s task to reflect the new cutter assignment.

[Monitor Receive-Push: AIS]: Based on the task assignment, PIKE receives

OCEAN TRADER’s position information from the Automated Identification

System.

D. FUNCTIONAL AREAS
The actions (operations) and capabilities performed by the system for the

user defines the systems’ functionality. We divide our SOA’s functionality into

five different areas as indicated in Figure 5 above. This section describes these

areas in detail, identifies the legacy stovepipe systems, and defines a small

portion of the services required to implement the architecture.

1. Planning
The planning area encompasses all mission planning, event scheduling,

and resource allocation functions. It corresponds to the “planning” capability in

the Command Center Program Manual (CCPM). It includes deliberate planning

operations, and crisis action planning for emergent events such as search and

rescue, marine environmental protection response and disaster response.

a. Discussion
The planning area’s base services and data model must be

carefully constructed. They must contain enough details to meet individual

 36

planner’s needs at all levels, without including so many details as to become

cumbersome and unmanageable. Given the wide range of missions and scope

of operations, all planners do not have the same needs. Users at each level

need the functionality and appropriate user interface for their mission area.

Some information applies to all missions, but individual communities will extend

the basic structure with details specific to their requirements. The challenge lies

in ensuring each planner has the details they need to effectively plan their

mission, without overwhelming the system.

The following deliberate planning cycle example illustrates the

needs of Coast Guard planners. At the strategic level, the area command staff

promulgates annual goals and targets. Each district takes those goals and

creates the operational plan for their subordinate sectors. The sector staff turns

those planning goals into tactical missions assigned to individual response units.

Each unit creates a unit level plan to assign resources and personnel for each

mission based on their personnel and equipment readiness. This multi-level

process happens in each mission area, for each iteration of the deliberate

planning cycle.

This process would be relatively straightforward if we only

considered law enforcement, vessel safety inspection, or any one individual

mission. It becomes much more complex when we expand the planning needs

at each step in the process to 10 or 20 different missions. The staff at a sector

continuously plans for law enforcement, homeland security, vessel safety, and

port state compliance operations, just to name a few. While these operations

share some common planning details, each mission area does have unique

content. Sector command centers additionally need to perform crisis action

planning to respond to SAR, marine accidents, and pollution incidents. One rigid

system will not meet the planning needs for all missions at all organizational

levels.

The Coast Guard needs a well balanced, component-based

planning system that can provide and integrate tailored solutions specialized for

 37

different users and missions. Consider the scenario in Section C above. In the

CGC2 SOA planning services, efficiency and accuracy prevail up and down the

chain-of-command, in stark contrast to current stovepipe planning procedures.

As the typical deliberate planning cycle currently happens, planners have their

own system to document and pass information at each level. Strategic guidance

lives in Microsoft Word documents or message traffic. Operational planners

create a local document, spreadsheet or small database to manage their data.

Often, they email these files to subordinate units or place them in a public folder

on a shared server. Each unit then creates a local system for managing their

tactical scheduling, as well as other local functions. This inherently inefficient

procedure limits our ability to respond in the dynamic environment. Status

changes made at the unit level (as when the USCGC TERN was no longer

available in the scenario) do not necessarily get reported back up the chain. A

well constructed planning system will give decision makers at all levels the most

accurate and timely information to make intelligent decisions. Improved decision

making enables us to better serve our customers and more effectively use our

scarce resources.

b. Legacy Planning Systems
The following legacy planning systems can provide functionality in

the CGC2 SOA:

• Maritime Homeland Security Operational Planning System
(MHS-OPS): a homeland security operational and tactical
mission planning and scheduling application.

• Computer Aided Search Planning (CASP): a SAR planning
tool used to determine search object drift, over a defined
time, in an off shore oceanic environment.

• Joint Automated Worksheet (JAWS): a SAR planning tool
used to determine search object drift over time and calculate
optimal search areas utilizing available assets.

• Search and Rescue Optimal Planning System (SAR OPS):
a SAR planning tool that uses environmental data to develop
optimal search plans based on a defined “effort”, or resource
hours available.

 38

c. Planning Services
The following descriptions provide a service framework to meet the

planning needs described above. The first six define general tasking services we

will reuse in other Coast Guard SOAs:

• Create Plan: Create and populate a new plan. This includes
options for several different plan types including JOPES,
ICS, Annual Schedule, Quarterly Schedule, and Weekly
Schedule.

• Modify Plan: Changes data elements in existing plans. This
service also appends any supporting tasks to the plan.

• View Plan: Displays existing plans in various formats. This
service may be called by the reporting services.

• Validate Plan: Error and omission check.

• Approve Plan: Tracks a plan’s review and approval by the
chain of command.

• Assign Plan: Assign a plan to a subordinate unit.

• Available Assets: Generates a list of assets in Bravo or
Alpha status, located within the response range of a given
geographic position at a given time.

• CASP Service: Generates search pattern “probability of
detection” graphic.

A case contains information about a specific Coast Guard mission

event. Any mission area can create a case, however law enforcement, SAR, and

Marine Safety events typically initiate them. Cases also store intelligence

information related to a specific event or entity (vessel, person, cargo, facility,

company). We discuss cases in the planning section because planning typically

happens in conjunction with a case being created. Cases also fit in the reporting

section although we do not discuss them there.

• Create Case: Create and populate a new case. This
includes options for several different case types, like Search
and Rescue, Law Enforcement, and Marine Investigation.

• Modify Case: Makes changes to data elements in existing
cases. This service also appends supporting information
and electronic documentation (evidence) to the case.

 39

• View Case: Displays existing cases in various formats.
Reporting services may call this service.

• Assign Case: Assign a case to a subordinate unit.
d. Planning Conclusion
The Coast Guard has taken a step in the right direction with the

prototype MHS-OPS system. It implements some of the planning functionality

described above, and this shows promise. However, in typical Coast Guard

fashion, we limited it to only meet the needs of one mission. This system does

offer an excellent entry point for building our CGC2 SOA’s planning functions. To

begin with, MHS-OPS must be service-enabled and integrated into the SOA.

2. Tasking
Once we have planned our operations, the services in the tasking

functional area must enable effective resource assignment. For this discussion,

we define tasking as the point in the process where a decision-maker directs a

specific asset to go to an assigned point to perform a particular objective. Each

plan usually includes multiple tasks.

a. Discussion
Within the Coast Guard “we push both authority and responsibility

to the lowest possible level. Our ethos is that the person on scene can be

depended upon to assess the situation, seize the initiative, and take the action

necessary for success.” (America’s Maritime Guardian 52) This organizational

culture stems from “Coasties” ,operating without constant communication with

their superiors over the last two-hundred seventeen years. We still embrace this

autonomous operational environment today. Operators use their commander’s

stated goals and applicable Coast Guard policies as the basis for their on-scene

decisions. Commanders expect situations to change as assets operate in a

dynamic environment. Therefore, our tasking services will focus on telling an

asset to “go and do” without encumbering them with overly complex task

descriptions.

The services within this functional area provide the following

information: asset being tasked, user assigning task, action to perform, place,

 40

time, and target description. Section F describes this data structure. The place

and target aspects provide a dramatic improvement over existing capabilities.

The place information includes track-lines, search patterns, and geographic

points. The target information contains sufficient detail for the asset to locate and

identify the object, including description and tracking information from all

connected systems. The ability to electronically transmit and then automatically

display and utilize information from other sensors and systems will significantly

improve Coast Guard command and control.

b. Legacy Tasking Systems
The following legacy tasking system can provide functionality in the

CGC2 SOA:

• Incident Command System (ICS): a standardized national
response management system used during crisis and non-
crisis events.

c. Tasking Services
The following descriptions provide the framework for creating

services to meet the tasking needs described above. The first four were written

as general tasking services that we will reuse in other Coast Guard SOAs.

• Create Task: Create a new task.

• Modify Task: Modify existing tasks.

• View Task: View existing tasks. The reporting module
services can also call these services..

• Assign Task: Assign a task to a subordinate unit.

• Scheduled Task Check: Compares existing task
requirements with the associated asset’s current or
scheduled readiness condition. A conflict triggers the
Available Asset service to prompt the CDO with a
replacement candidate list.

• Search Pattern: Generates positions for a search pattern
based on standard inputs, see Chapter 2 for more details.

• Environmental Limits Check: Accepts weather data and
asset type and compares the asset’s operational limits to the
forecasted weather. It returns a “go/no go” recommendation
for each asset, including the exceeded limits that cause a
“no go”

 41

• Create Target: Compiles position and other related track
information for transmission to an asset. Provides several
output formats to meet different asset navigation and display
systems’ needs.

• Intercept Target: Receives information from “Create Target”
service and generates local intercept solution displayed on
the assets navigation or display system. An enhanced
version fuses the external target data with the asset’s
organic sensors to produce a more accurate intercept
solution.

d. Tasking Conclusion
As with the Planning services, the base Tasking services need to

address the principal mission area details. We will develop additional services to

provide the unique functionality required in each mission area.

3. Communicating
The communication functional area provides the SOA’s backbone

essential to the system’s success. The best planning and tasking in the world

accomplishes nothing if no one knows about it. The communications services will

generate and disseminate many routine information alerts as well as enable real-

time and asynchronous communication between personnel and systems. At the

system level, it will conduct messaging between services. Services generate

messages automatically and invisibly to most users, but these important

messages implement the planning and tasking functions already discussed. The

following paragraphs highlight some differences between personal messaging

and service messaging.

a. Discussion
Service messaging in the SOA requires no user action, which

enables great efficiency and performance. Removing the human element from

routine monitoring, data fusion and transmission increases communications

quality and timeliness. Consider the HLS escort and boarding scenario without

SOA. The M/V Ocean Trader updates its arrival time at 0500 but the CDO is

busy preparing the morning brief. The assistant duty officer (ADO) checks SANS

during the morning watch relief, but he only pauses long enough to glance at the

 42

list and log the time change. In the midst of watch reliefs, morning arrivals, and

briefings, the ADO forgets to pass the change to the oncoming watch. Mid-

morning, the new CDO reviews the previous logs and sees the arrival change.

He asks the new ADO what action has been taken. The ADO checks SANS and

verifies the new arrival time. The ADO calls the unit, and leaves a message with

the seaman who answers the phone. He follows it up with an email to the

executive officer (XO), who is away from the unit until mid-afternoon. The ADO

expects the cutter to notify the VBST about the time change. Upon returning to

the unit, the XO grants liberty to her hard working crew and meets with the

commanding officer (CO). The work day has ended by the time she checks her

email and sees the time change. She immediately talks to the CO, sends a page

to her crew, and then calls the CDO to remind them about the cutter’s dockside

in the morning. The CDO looks up the sector’s vessel status list and sees the

PIKE is available. He passes that information to the oncoming watch later that

evening. After the watch turns over, the oncoming watch sends a tasking email

to the cutter and the VBST. However, it’s 2130, and the VBST is standing on the

dark pier ready to conduct the boarding.

 When you replace the over-extended, multitasked human element

with an always-running service, communications improve. In the service-enabled

HLS escort scenario, a monitoring service (described in the next section)

continuously checks a legacy system and immediately alerts the duty officer

when the target vessel changes its arrival. A tasking service automatically

identifies the schedule conflict for the assigned unit and proposes alternative

resources to select. Once the CDO has made a choice, a communications

service automatically generates and sends messages alerting all involved units

to the change in tasking, giving all concerned ample time to adjust their

schedules. A service replaces communications that would otherwise require

humans to perform telephone or email transmittals.

With a better understanding about service messaging in the SOA,

we can address communications between the SOA and people via instant

 43

messaging. Instant messaging has become a valuable command and control

communications capability. Messages are sent via computer or Short Message

Service (SMS) over a cellular phone. The SOA includes services that generate

instant messages, however, we must take care when creating them. A service

can just as easily message one recipient as 100. Over-messaging users may

glut and desensitize users, so they may miss a vital message among the fodder.

Like the diverse planning and tasking needs of our various mission areas, we

have diverse communications needs across different individuals in our service.

Some individuals focus on details while others wish to grasp only big picture

changes. Senior officers usually have less interest in minor changes than a

program manager would have. The messaging services need to address these

diverse needs as well, providing a common base structure applicable to all users,

while allowing personalization at the individual level.

b. Legacy Communications Systems
The following legacy communications systems can provide

functionality in the CGC2 SOA:

• Coast Guard Message System (CGMS): a system that
transmits and receives text messages.

• Rescue 21 (R21): USCG’s modernized distress
communications system, providing 911-like service to
mariners over VHF and UHF radio.

c. Communicating Services
The following descriptions provide the framework for creating

services to meet the communicating needs described above. They were written

as general communicating services we can reuse in other Coast Guard SOAs.

These services create a publish and subscribe capability that will push and pull

messages through the system in a manner transparent to the user:

• Create Message: Creates and “publishes” a message as the
requestor specifies.

• Receive Message: Subscribes to a publishing service and
typically serves as the initiating event in a work flow or
business process.

 44

• Send Message: The create message service calls this
service to transmit a message. When a unit doesn’t have
coverage, such as a cutter or aircraft,, this service will
transmit the message to the Forward Message service..

• Forward Message: Provides a store-and-forward message
repository. When units do not have coverage, this service
holds the message and sends it when they become
available.

d. Communicating Conclusion
The messages that flow within the SOA between services and

people dramatically improve the communications capabilities of the Coast Guard.

Numerous proprietary and open instant messaging standards exist for us to

choose from. Many government and military applications have embraced the

Extensible Messaging and Presence Protocol (XMPP) open standard. The

Marine Corps recently adopted XMPP as their instant messaging standard. The

Coast Guard must research the available options and choose the standard that

will best meet our needs. However, we should consider XMPP first.

4. Monitoring
A large part of any command and control system’s success hinges on its

ability to monitor the environment. The typical C2 system monitors blue (friendly)

force positions, operational status, and endurance, usually in separate displays.

It has sensors (e.g., radars, cameras) that monitor various environmental aspects

to enhance situational awareness, but these proprietary and closed systems

usually cannot share information with third parties. The CGC2 SOA monitoring

services provide environmental data from isolated sensors to the SOA, allowing

any participant with the appropriate permissions to access the data.

a. Discussion
Effective command and control requires monitoring, collecting and

fusing a tremendous amount of information. Our situational awareness hinges

on our ability to repeatedly access the appropriate information sources, evaluate

the data, and make the right conclusions. We consult many data sources several

times during each watch, in each operations center, in each sector, in each

district, in each area. The Coast Guard expends hundreds of man-hours each

 45

day, having highly skilled people sift through disjointed information displays

expecting them to correctly interpret the data and make the right judgments at

the right time. However, due to the sheer information mass, we often miss that

elusive data tidbit that would make it all clear. As currently practiced, fusion

requires much human effort, achieves modest results, and costs a lot. The

services in the monitoring functional area can automate the process a great deal,

providing the most valuable information to the user.

The SARSAT system is a good example of a stovepipe sensor

system. The system monitors the world’s oceans for Emergency Locator

Transmitters (ELT), set off when people are in distress on the sea. The U.S.

Mission Control Center (USMCC) in Suitland, Maryland, monitors the entire

system. When they receive an ELT, they report it to the Joint Rescue

Coordination Center (JRCC) in the distress region. The JRCC then passes

tasking on the Sector who tasks the unit. This entire process happens by voice

telephone communications, slowing the information flow. Directly feeding this

data into a service can reduce or eliminate the human activity. The new Rescue

21 system (maritime 911) is also unnecessarily stovepiped. It displays the alert

position information on a computer monitor, but does not provide the data to

other systems. Humans must extract and distribute Rescue 21 information.

b. Legacy Monitoring Systems
The following legacy monitoring systems can provide functionality

in the CGC2 SOA:

• Automated Mutual Assistance Vessel Rescue (AMVER)
System: a voluntary global reporting system to provide
accurate ship positions and characteristics for vessels near a
reported distress, and then divert the best-suited ship(s) to
respond to that distress.

• Automated Identification System (AIS): a transponder based
system onboard commercial vessels that broadcasts
identification and position information.

• NLETS / NCIC: a Department of Justice database for
criminal justice information including photographs and
fingerprints.

 46

• Hawkeye: a sensor-tracking system to detect, track, and
identify vessel traffic.

• Lookout Lists (LOL): a federally maintained list containing
individuals subject to intense scrutiny from the US
government.

• Ports and Waterways Safety System (PAWSS): a
surveillance and detection system using remote sensors to
monitor vessels operating in U.S. ports and waterways.

• Rescue 21 Direction Finder (R21DF): a triangulation
capability for VHF and UHF communications to “pin point” a
radio transmission’s location.

• Search and Rescue Satellite Aided Tracking system
(SARSAT): a satellite system for detecting a relaying
Emergency Position Indicating Radio Beacons (EPRIB) and
Personal Locator Beacons (PLB) signals to the appropriate
Rescue Coordination Center.

• Ship Arrival and Notification System (SANS): a database
populated with Advanced Notice of Arrival information
provide by ships 96 hours prior to entering U.S. territorial
waters.

• Vessel Monitoring System (VMS): and AIS system for
fishing vessels.

• Vessel Traffic Service (VTS): a navigation information and
traffic organization system to improve situation awareness
for vessels operating in certain waterways. VTS sensors
include cameras, radars, and AIS.

c. Monitoring Services
The following descriptions provide the framework for creating

services to meet the monitoring needs described above. The first three were

written as general monitoring services for reuse in other Coast Guard SOAs.

• Monitor Receive-Push: Accepts data being pushed from an
external source (asset, service, or system), and then
forwards the data to a consumer.

• Monitor Request-Pull: Requests data from an external
source (asset, service, or system) configured to respond to
requests.

• Monitor Transmitter: Sends internal events to subscribers.

 47

• Weather Forecast: Extension to the base Receive-Push
service for data from the National Weather Service.
Receives data forecast for a defined area.

• Environmental Limits Monitor: This coarse-grained service
uses the output from Weather Forecast service and a given
asset type. It uses that data to invoke the Environmental
Limits Check service. This creates continuous monitoring of
weather conditions and automatically alerts the user when
they exceed limits.

• Rescue21DF: Extension to the base Receive-Push service
for the Rescue 21 Direction Finding system. This service will
receive triangulated positions from distress call for a given
geographic area.

• eNOAD: Extension to the base Request-Pull service for the
ship arrival and departure notification system. Initial version
will get updated information for all vessels in a defined area
at a defined frequency. One variation will only request
information on one vessel and will be linked to a task, so that
vessel arrival changes that impact CG plans will get flagged.

• AIS: Extension to the base Receive-Push service for the
Automatic Identification System. This service will receive
vessel position information for all vessels in a defined area.

• Blue Force Tracker: Extension to the base Receive-Push
service to track USCG asset positions. This service will
receive cutter, boat, and aircraft positions within a defined
area.

d. Monitoring Summary
The Coast Guard employs many different stovepipe systems to

monitor the maritime domain. The services in the monitoring functional area

expose the functionality and data from those stovepipes, allowing the SOA to

expose them for others to access and exploit.

5. Reporting
a. Discussion
The reporting functional area operates at several layers. It

exchanges pertinent data with existing legacy systems. It fuses information

collected by monitoring services into relevant data that can be used for planning

and tasking. It provides a means for retrieving information or statistics on

 48

resources expended. Strategic planning and service growth especially benefit

from this functionality. Finally, it contains internal administrative services

necessary to manage and audit data entries for accuracy and process

adherence.

For example, as the CDO closes a SAR case the administrative

audit automatically occurs. The audit will ensure the data accuracy and

correlation to all sources associated with that entry. The audit will also ensure

that all assigned tasks or defined business processes were completed. It

forwards exceptions to information quality or process adherence to the case

owner in an exception report via the messaging services.

b. Legacy Reporting Systems
The following legacy reporting systems can provide functionality in

the CGC2 SOA:

• Abstract of Operations (AOPS): a database for recording
Coast Guard asset (cutter, boat, aircraft) employment
information.

• Local Notice to Mariners (LNM): a notification system to
alert mariners about Aids to Navigation (AtoN)
discrepancies, outages, corrections, and hazards to
navigation.

• Marine Information for Safety and Law Enforcement
(MISLE): four integrated applications for recording
information about LE, Marine Safety, SAR, and other
missions.

• MHS-OPS: a prototype system to create standardized,
operational planning for Homeland Security operations
across the Chain of Command levels (HQ, Area, District,
Sector, Unit).

• Situation Report (SITREP): a standard report generated to
inform the Chain of Command about on-scene conditions
and mission progress.

• Status Board: a display showing subordinate assets
(cutters, boats, aircraft, teams, personnel), their conditions
and current actions, typically done by hand on a dry-erase
board.

 49

c. Reporting Services
The following descriptions provide the framework for creating

services to meet the reporting needs described above. These three were written

as general reporting services for reuse in other Coast Guard SOAs:

• Report Request: Creates a request for a report containing
specific information from specific sources.

• Report Aggregator: Gathers information from other services
and sends it to the report generator.

• Report Generator: Creates the report in the requested
format and delivers it to the requestor.

• Database Query: Performs SQL Data Manipulation
Language Select, Insert, Update, and Delete database
queries.

• Case Auditor: Verifies the process completion and
information contained in an case (e.g., SAR, law
enforcement), with detailed exception reporting.

• Create Log Entry: Creates an electronic log entry, can link
to another specific service execution, creating an official
record of Coast Guard actions.

• Review Log: Displays logs so that users can browse official
records, hyper-links with logs allow users to review when
and how services were utilized.

d. Reporting Summary
The reporting services unlock the data trapped in legacy

stovepipes. In doing this, they have the potential to reach the most users and

improve the information quality they utilize. The ability to extract information

quickly and easily will improve many users’ effectiveness. SOA’s customizable

nature will allow users to configure the reporting services to exploit previously low

value information in new and powerful ways.

E. QUALITY ATTRIBUTES
The Software Engineering Institute defines a quality attribute as “a

property of a work product or goods by which its quality will be judged by some

stakeholder or stakeholders. The quality attribute requirements … have a

significant influence on the software architecture of a system.” (“Software

 50

Architecture Glossary”) Quality attributes are the product aspects that

stakeholders deem most important to success, either by delivering what

stakeholders desire or avoiding things they can’t accept. We emphasize the

following quality attributes for the CGC2 SOA: interoperability, security, usability,

extensibility, and scalability. Other quality attributes may also apply, but these

five are essential.

1. Utility Tree
Utility trees provide a top-down, structured method for generating

scenarios to define quality attributes concretely. The utility tree’s nodes show

important quality goals and the leaves hold scenarios exemplifying those goals.

We have produced a utility tree for the CGC2 SOA. Figure 8 below shows the

first three levels. This tree stops at the quality attribute refinement level, before

showing the specific quality attribute scenarios. Individual quality attribute

descriptions later in this section carry the process through and depict detailed

scenarios. We’ve numbered the quality attributes using a dot notation, for

example numbering “Security – ensure releasability” as 2.4. The trees show

these numbers in blue.

A utility tree also encourages stakeholders to prioritize the quality attribute

requirements in two ways: “(1) by the importance of each scenario to the success

of the system and (2) by the degree of difficulty posed by the achievement of the

scenario, in the estimation of the architect.” (Clements, Kazman, Klein 55)

Relative rankings High (H), Medium (M) and Low (L) indicate the priorities we

assigned. The scenarios marked (H, H) become the focus of architecture

development effort because they represent current and future driving forces on

the architecture. We indicate our priorities above each quality attribute scenario.

 51

Figure 8. Utility Tree (top level)

 52

2. Quality Attribute – Interoperability (1.0.0)
Interoperability assures the communicating entities’ can share specific

information and operate on it according to an agreed-upon operational

semantics. (O’Brien, Bass, Merson 4) The scenarios on the right side of Figure

9 illustrate our SOA’s unique interoperability requirements.

Figure 9. Utility Tree – Interoperability

3. Quality Attribute – Security (2.0.0)
Security has many different aspects, but generally exists when users,

applications, and services can only perform authorized actions. The following

four principles are broadly used to define computer security:

• Confidentiality – only authorized subjects can access the

information or service.

• Authenticity – verification that the indicated author/sender is the

one responsible for the information.

• Integrity – information is not corrupted.

• Non-repudiation – a message or action cannot later be denied

by any participant.

(O’Brien, Bass, Merson 12)

The scenarios on the right side of Figure 10 illustrate our SOA’s unique

security requirements.

 53

Figure 10. Utility Tree – Security

4. Quality Attribute – Usability (3.0.0)
Usability measures the quality of a user’s experience while interacting with

information or services. (O’Brien, Bass, Merson 11) A system that does what

the user wants, when they want it done has high usability. The scenarios on the

right side of Figure 11 illustrate our SOA’s unique usability requirements.

 54

Figure 11. Utility Tree – Usability

5. Quality Attribute – Extensibility (4.0.0)
Extensibility provides the ability to add new features or components to the

existing services without affecting other services or parts of the system.

(O’Brien, Bass, Merson 17) Extensibility requires the architecture to consider

future growth and adapt to a changing environment. The scenarios on the right

side of Figure 12 illustrate our SOA’s extensibility requirements.

 55

Figure 12. Utility Tree – Extensibility

6. Quality Attribute – Scalability (5.0.0)
Scalability provides the ability to function well (without degradation of other

quality attributes) when the system increases in size or volume in order to meet

users’ needs. (O’Brien, Bass, Merson 16) Designing for scalability requires

understanding the bottlenecks in the system and then applying a horizontal

(distributing work to other machines) or vertical (upgrade to more powerful

machine) solution. The scenarios on the right side of Figure 13 illustrate our

SOA’s unique scalability requirements.

 56

Figure 13. Utility Tree – Scalability

7. Operational Examples
Table 2 below contains nine vignettes that demonstrate the CGC2 SOA’s

desired aspects. The right column links each vignette to the applicable scenarios

from the utility trees above using the dot notation. This table shows the

relationships between Coast Guard missions and the architecture’s quality

attributes.

 57

Vignettes QA Scenario

Marine Safety
[Search & Rescue] A cruise ship carrying 1000 passengers catches fire 100
miles off the coast of North Carolina. Aircraft and cutters from two Coast
Guard districts respond. Ten level 1 and level 2 trauma centers are contacted.
AMVER identifies 10 vessels in the vicinity, they are contacted and assist.

[Boating Safety] The Coast Guard implements a Safe Boating portal for the
public. It provides weather forecasts, notice to mariners information, and the
ability to create and file a Float Plan. This web site does not break under
heavy seasonal load (e.g., summer holiday weekends). The information
entered is easily shared with local units and emergency response agencies.

1.2.1
3.1.1
3.3.1
3.4.1

1.1.2
3.4.1
4.2.1
5.1.1
5.4.1

National Defense
[Homeland Security] Intel from a new data source detects a potential threat on
a cargo container bound for the U.S. The vessel is boarded off shore and the
container is found carrying hundreds of illegal weapons. This event involves
the Coast Guard, Customs and local port authority.

1.1.1
1.1.2
2.1.1
4.1.1

Maritime Security
[Drug Enforcement] A WMEC on a regularly scheduled LE patrol in the
Caribbean Sea boards a foreign flagged high interest vessel and discovers
3000 pounds of cocaine. The U.S. State Department, U.S. Department of
Justice, and the foreign government are also involved.

[LMR] A WHEC reports dozens of Russian vessels illegally fishing in the
“Donut Hole” in Alaska. The WHEC CO reports that he met with strong
resistance while attempting to board one of the vessels and he is asking for
support.

[LMR] A short duration seasonal fishery opens requiring increased law
enforcement effort and SAR response readiness. This day or week long event
involves the National Marine Fisheries Service, state Fish and Wildlife
agencies, and National Oceanographic and Atmospheric Agency attorneys.

1.1.1
2.1.1
2.2.1
2.3.2

2.2.1
2.3.1
3.1.1
3.2.1

1.1.2
1.2.1
5.1.1
5.2.1

Maritime Mobility
[ATON] A hurricane off the east coast forces over 100 buoys off station and
damages hundreds more fixed aids. ATON assets from multiple districts
respond to survey the waterways and reposition the aids.

[VTS] A new Vessel Traffic Service is established in a large commercial port.
This new unit will require 50 new users, track over 100 vessels a day, and will
exchange information with two port authorities, the pilots, and 50 companies.

1.2.1
3.1.1
5.2.1
5.3.1

5.1.1
5.2.1
5.4.1

Protection of Natural Resources
[Oil Spill] A super tanker runs aground in the Straits of Juan De Fuca spilling
millions of gallons of crude oil, jeopardizing hundreds of miles of U.S. and
Canadian coastline. The response effort includes multiple U.S. and Canadian
Coast Guard assets, as well as federal and local government agencies.

1.1.1
1.1.2
3.3.1
4.1.1

Table 2. Operational Examples and Corresponding Quality Attributes

 58

F. CONCEPTUAL DATA MODEL (CDM)
This section outlines the CGC2 SOA data model. The actual CDM

process will be “a serious data modeling exercise that typically requires the input

of highly experienced analysts and architects. The end result is a set of custom

standards for the enterprise.” (Gabriel) As such, the conceptual diagrams

presented here show only a small portion of the full model required to implement

a functional system. We chose to focus on the Planning and Tasking functional

areas because they provide examples most readers will easily understand. At

this point it’s important to clarify our terminology so we don’t confuse the terms

planning and tasking. In this chapter’s “Functional Areas” section, planning and

tasking are verbs, or actions the services perform. In this section, planning and

tasking are nouns, or concepts represented by the data models shown. Although

we present incomplete data models, they provide concrete data organization

examples within the CGC2 SOA system. The figures below show XML schema

diagrams. The rectangles represent individual CDM elements (e.g., Asset), but

they do not contain specific data from the example (e.g., USCGC RUSH, a high

endurance Coast Guard cutter).

1. Planning Element
A plan includes elements for the commander’s intent, the assets

employed, the operating area, the plan type, and the target objects. The

PlanType element contains related missions, tasks, and other plans. This data

model works for a strategic plan and its supporting operational plans. Figure 14

shows a conceptual view of the Plan element.

 59

Figure 14. Data Model – Planning Element

To illustrate the data model, consider the following example. District 14

creates a fisheries enforcement operations plan. In addition to the typical

operations plan information (why, who, how, what, when, where) it includes

USCGC RUSH’s and Air Station Barbers Point’s missions and tasks. In this

conceptual data model, a task can occur as a Plan element or as a Mission

element contained in a plan. In our examples, all tasks are Missions elements.

We have no Plan-level tasks. Missions and tasks will be exemplified in the

following sections.

2. Mission Element
When an asset carries out a mission, it performs multiple tasks. The CDM

Mission element’s structure represents this by grouping tasks performed to

support the mission. Figure 15 shows a conceptual view of the Mission element.

While this conceptual view lacks detail, additional elements will be added to

include appropriate amplifying details when the Coast Guard creates the actual

CDM.

 60

Figure 15. Data Model – Mission Element

In our example, Air Station Barbers Point’s mission contains tasks for

individual HC-130 surveillance flights. USCGC RUSH’s mission includes

patrolling a large area, employing its sensors and embarked HH-65 helicopter to

locate fishing vessels. When an asset locates a fishing vessels, USCGC RUSH

will intercept them and deploy its small boat, which will transport the boarding

team. The team will board the vessels and enforce all applicable U.S. laws,

regulations, and treaties. All four assets (e.g., RUSH, HH-65, small boat,

boarding team) carry out distinct tasks related to the cutter’s mission. The

District 14 operations plan contains both the Air Station’s and cutter’s missions.

3. Task Element
The Task element’s structure provides the what, when, where and other

relevant details about a task. Figure 16 shows a conceptual view of the Task

element.

 61

Figure 16. Data Model – Task Element

Continuing our example, we create a task for each HC-130 surveillance

flight, each HH-65 flight, and multiple tasks for USCGC RUSH’s patrol. The

target in the Task element can be either a general target type (e.g., fishing

vessels) or a specific object (e.g., F/V BIG KAHUNA) represented by the Target

element shown in Section F.5. below. During a HH-65 task the helicopter locates

F/V BIG KAHUNA 15 miles from USCGC RUSH. USCGC RUSH generates a

task to intercept the vessel, a task for the small boat, and a task for the boarding

team.

4. Asset Element
Assets include the aircraft, cutters, boats, vehicles, teams, and individuals

that perform Coast Guard missions. The Asset element models an asset’s

capabilities (e.g., speed, range) and limitations (e.g., weather, endurance).

Figure 17 shows a conceptual view of the Asset element. Assets in our example

include the USCGC RUSH, HH-65, small boats, boarding teams, and HC-130.

Note that the data element below can easily incorporate vehicles and vessels

from local police, fire departments, and other emergency response organizations.

 62

Figure 17. Data Model – Asset Element

5. Target Element
Targets are things we want to track or find. Targets exist at two levels in

the CDM. The Plan and Task elements utilize general target types (e.g., fishing

vessels). Tasks can also contain information about a specific object (e.g., F/V

BIG KAHUNA) with details that enable an asset to track or find it. The CDM’s

Target element contains the needed details. Figure 18 shows a conceptual view

of the Target element.

Figure 18. Data Model – Target Element

 63

6. CDM Conclusion
A complete CGC2 SOA data model capturing all five functional areas

obviously requires much more detail and many more elements. As stated earlier,

creating a CDM requires experienced and skilled analysts and architects. A

complete CDM exceeds this thesis’ scope. We have introduced a basic

framework that supports our command and control functional areas. The Coast

Guard has already begun modeling data elements in existing systems with the

Enterprise Data Catalogue project. While this effort will not produce a CDM, it

moves us in the right direction and will provide supporting documentation to

create a sound command and control CDM when the time comes.

7. Information Exchange Models
The previous sections have described an information sharing data model

within the Coast Guard. However, we also need to share information with

multiple federal, state, local, and foreign government agencies. That information

sharing requires a different data model. Communities of Interest (COI) are

collaborative groups that create an accepted information exchange vocabulary

relating their shared goals, interests, and objectives. COI data models are often

called information exchange models. Two notable command and control

information exchange models include:

• Joint Consultation Command & Control Information Exchange Data

Model (JC3IEDM) – decade-long NATO endeavor to create a

command and control information exchange model.

• National Information Exchange Model (NIEM) – U.S. federal

government project to create “enterprise-wide information exchange

standards and processes that can enable jurisdictions to effectively

share critical information in emergency situations, as well as support

the day-to-day operations of agencies throughout the nation.”

(www.niem.gov)

COI data models rarely function as the CDM within any one organization,

since they exist to exchange information between community members. They

 64

are not built to meet any one member’s individual needs. This is true of

JC3IEDM and NIEM. Neither model meets the Coast Guard’s needs for internal

use, because they don’t meet our unique command and control needs.

However, we must consider widely accepted COI models like JC3IEDM and

NIEM when creating our CDM. The ability to quickly and accurately translate

information between them and our CDM will provide unprecedented data sharing

with other agencies.

8. Maritime Information Exchange Model (MIEM)
A COI developed data model occasionally does meet an organization’s

content, scope, and complexity needs. When that happens, the data model can

be utilized within the organization’s larger CDM. The Navy’s Comprehensive

Maritime Awareness Joint Capability Technology Demonstration (CMA JCTD)

produced one such model. The Maritime Information Exchange Model logically

groups data by epochs in the vessel’s history. This links sensor data for vessel

positions and all available data about cargo, people, companies, and facilities

associated with the vessel. Should the MIEM become the standard for Maritime

Domain Awareness data sharing, it could easily replace the Target element in

our CDM’s Task. This would enable the CGC2 SOA to accept a Maritime Object

from an intelligence fusion system and pass it on to an asset in a Task. A CGC2

SOA Case that contained both the Coast Guard boarding results and the related

Maritime Object would provide solid evidence for our law enforcement action.

The Coast Guard could forward it on to the Department of Homeland Security or

Department of Justice for criminal prosecution. Because those agencies IT

systems can accept MIEM formatted data, the attorneys can automatically utilize

the case file. This semantic interoperability perfectly demonstrates the powerful

combination of SOA and shared data models. Figure 19 shows the MIEM’s base

element, the MaritimeObject.

 65

Figure 19. MIEM – Maritime Object

G. PRODUCT LINE ARCHITECTURE FOR COMPOSITE APPLICATIONS
1. Composite Applications
Composite applications interact with users by providing the necessary

user-level services to create an SOA user interface. We compose applications

by coupling several different services, data stores, and user interfaces using

standardized message layers. Loosely coupled frameworks allow individual

nodes in a distributed system to change without affecting or requiring change in

any other part of the system. The composite application’s components can be

mixed and matched, like Lego blocks, allowing developers to create many

different applications with relatively few services. Figure 20 shows a composite

application for command and control with a customization layer to provide each

user with the functionality and presentation he or she wants.

 66

Figure 20. Example Composite Application

2. Product Line Architectures
As the Coast Guard follows the Commandant’s mandate to shift our

information technology infrastructure to SOA, we will make many different

composite application variations. The Coast Guard should obviously develop

them with an adaptive and efficient (faster, cheaper, more reuse) method.

Product Line Architectures provide such a method. A PLA helps developers

implement a family of related software products that address a variety of similar

application requirements by composing generic reusable components. The PLA

defines how the components function and interact to create the required product.

The Software Engineering Institute defines a PLA-based family of products this

way:

A set of software-intensive systems sharing a common, managed
set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of
reusable core assets in a prescribed way. (“Software Architecture
Glossary”)

Most successful PLAs generalize and evolve from successful products,

and therefore the Coast Guard won’t be in a position to create a credible PLA

until after some composite applications are built. Once the first few composite

applications exist, we can identify the necessary architecture and understand

 67

how to generalize specific implementations into reusable frameworks and

components. We can then begin to consider how many valuable components we

have, where we find them, how much to invest in them, and where to start. We

need to think about our product line as a portfolio of assets, with each service or

component evaluated based on its individual performance and importance to the

product line as a whole. We want to work intelligently by focusing on areas of

greatest value first, to discover and exploit the PLA early. The goal is to deliver

big value and reap big rewards by reapplying lessons learned and reusing

components extracted from previous applications and PLA endeavors. We will

focus on concentrating in depth on one area, iterating to develop one PLA and

systematically reuse components. Figure 21 shows a PLA for command and

control, with services as the reusable components.

Figure 21. Command and Control SOA as PLA

3. Mashability
The purple “customization” adaptors in Figure 20 represents many

different options for tailoring each component. While many issues arise in

creating customizable components, we find one aspect critical for each

component. We call this aspect mashability1. Each component must be

mashable in at least three dimensions; human-computer interface, world model,

and C2 functions.
1 The term mashup describes a web page or application that combines data from two or

more external sources. We use the term mashability to describe a component’s ability to be
mashed, or combined, with other components.

 68

• Human-Computer Interface: A human user ultimately receives
information from a component. This dimension determines the
methods for physical display characteristics (size, position) and the
different options for combining its output with that of other
components. Most readers familiar with mashups only think of this
aspect of mashability. A nautical chart from one source, weather
from another component, and AIS data from a third mash easily on
a graphical geographic display. These three merge to present the
user with new and meaningful information.

• World Model: A “world model” represents an organization’s
situation awareness. It represents our best understanding of what’s
going on, where, why, and how. This model is the basis for efficient
thought, a more extensive version of the OODA loop (Hayes-Roth
Hyper-beings 59). It maintains the environment’s state in three
time regions; past, present, and future. It also maintains data at
different levels of abstraction and aggregation, as needed for
decision-making by officers responsible for vastly different
geographic and temporal scopes. So each component operates on
data from some select portion of the organization’s world model.
Each component must describe how it mashes its portion of the
world model with those being used by the other components in the
same application. For example the previously described GUI with
weather, chart, and AIS data might have a slide bar that represents
time. As the user drags the slider forward the AIS tracks and
weather data step forward through time, reflecting each
component’s state at each future time point. The components’
world model mashability makes merging components’ beliefs
possible.

• C2 Functionality: Each component performs one or more functions
of the Efficient Thought superior decision making loop. These
functions access and modify a user’s world model. The
components’ functionalities must also be mashable. For example a
component that performs some “assess situation” function must
easily mash with other components that produce sensor data
“observations.” In this way, composite applications can assemble
process chains from individual components and their outputs.

4. Conclusion
The Coast Guard will need to improve continuously its Product Line

Architecture based on each iteration’s successes or failures. Ultimately, we will

develop services in other domains as well, and then we will want to create

composite applications for human resources, logistics, and financial

management, to name a few. We’ll learn lessons about the architecture and its

 69

components as we build applications. Our race into the future depends on our

ability to learn quickly and exploit those lessons effectively. The next chapter

describes our implementation plan. It proposes a two-loop method for

continuous, incremental improvement.

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

IV. IMPLEMENTATION PLAN

A. INTRODUCTION
This chapter provides the response to our second thesis question, “What

is the optimal implementation plan for this CGC2 SOA?” Unfortunately, a typical

government approach to design an architecture and develop systems that meet

our command and control needs will likely fail, as do most large-scale information

technology projects. These “big bang” projects have decades-long timelines and

usually fail because they base their architecture on requirements collected once,

during a prolonged process at the project’s inception. We disagree with the “big

bang” approach. We expect that our needs will change over time, and

technology will continue its dramatic advance. In order to accommodate our

evolving needs and capitalize on the latest technology, we think that the Coast

Guard should avoid creating the CGC2 SOA as a “big bang” project.

In addition to “big bang” projects, two other common approaches are used

to implement systems. Figure 22 shows their theoretical ability to provide

capability over time. We call the first alternative “Build it Now” because it skims

through the requirements collection and architecture definition activities and

almost immediately begins building things. We call the second alternative

“Incremental Evolutionary” because it aspires to deliver value while defining the

architecture in response to ever changing needs. Section B describes this

method in greater detail.

Figure 22. Theoretical Capability Derived Over Time

 72

We recommend the “Incremental Evolutionary” approach as the best

method to implement the CGC2 SOA. It recognizes the constantly changing

nature of both the problem and required solution and then evolves accordingly. It

also supports horizontal integration, across Coast Guard mission areas, and

resists creating vertical stovepipes. Both the “Big Bang” and “Build it Now”

methods fail to deliver capability as theorized. The “Big Bang” method expends

precious time and resources defining a problem and potential solution, ignoring

the fact that both the problem and technology available to solve it are constantly

changing. The “Build it Now” approach fails because the developers fail to

properly consider the long-term and widespread impacts their early decisions

have on the eventual system.

Figure 23 contrasts the theoretical achievements of these various

approaches with the results they usually attain in actuality. The “Big Bang”

systems usually fail, thus delivering no value. The “Build It Now” approaches

achieve diminishing returns over time and eventually require a start-over. An

“Incremental Evolutionary” approach on the other hand, continually plans for,

adapts to, and exploits predictable advances in technology to deliver more value

and what Kurzweil calls “accelerating returns.” (Kurzweil 31-35)

Figure 23. Actual Capability Derived Over Time

Therefore, we must adopt a flexible, rapid, and incremental

implementation process that delivers some immediate value to users. To keep

 73

pace with our changing needs and advancing technology, the development

cycles must produce software services or applications every six to twelve

months. We must also utilize a process that will evolve the architecture as we

gain experience with the service oriented methodology. We describe our

incremental implementation method in Section B, followed by a proposed

organizational alignment in Section C. Section D summarizes several SOA “best

practices” and “worst practices” from the information technology industry and

Section E addresses the impacts SOA has on quality attributes. The answer to

our second thesis question provides a sound approach that outlines key activities

required to create the CGC2 SOA successfully.

B. DASH-CREIGH IDeA METHOD
1. Introduction
We designed the Incremental Development Approach (IDeA) to improve

the Coast Guard’s ability to implement the SOA successfully. Our method is

based on agile software development practices that minimize risk by producing

software in short iterations with clearly defined scope. IDeA focuses on

continuous improvement of the architecture, software components, and the

implementation process itself. IDeA comprises two connected loops, the

Architecture Loop and the Service Development Loop (SDL). The Architecture

Loop designs, evaluates, and evolves the SOA at the same time that the

components (services) are created, deployed and assessed. The SDL produces

and improves the actual components. We propose this approach to implement

the Command and Control SOA described in Chapter III, but we purposely made

it general enough for any SOA implementation.

2. Architecture Loop
The Architecture Loop begins with the vision, technical strategies, and

concepts that influence the architecture. Each stakeholder brings his or her own

ideas about the architecture’s design and functions. The architects and

implementers need to understand SOA’s strengths and weakness when

designing and building the CGC2 SOA. Equally important, they must accept the

fundamental change from building vertical stovepipe information systems to

 74

horizontally integrated ones. SOA’s modular horizontal integration unlocks the

functionality and data trapped inside stovepipe systems and allows imaginative

Coast Guard personnel to create new uses from existing components. The cloud

at the top of Figure 24 graphically represents this “vision.” The Architecture Loop

continues with four sequential steps and their outputs. The first two steps

incrementally produce the services; the final two steps provide continuous

improvement. The Architecture Loop’s steps and outputs are listed in Table 3.

Steps Outputs

Design SOA Set of Services

Build One Component Functioning Component

Re-evaluate Revised Business Processes and
Revised Technical Processes

Adjust Vision, Strategy, and Concepts Revised Vision, Strategy, and Concepts

Table 3. IDeA Architecture Loop – Steps and Outputs

Design SOA – The design process combines the stakeholders’ visions,

technical strategies, and desired end states. It produces many concepts

represented in various forms: utility trees of quality attributes and scenarios, line

diagrams of components and the relationships between them, and lists of

required technical standards. Ultimately, service designers transform these

concepts into distinct services with detailed descriptions of their functionality,

interfaces, and interactions (with external systems and other services).

Build One Component – This step represents the Service Development

Loop (SDL) that will be described in the following section. In this step,

developers convert a description into a functioning service. This incremental

SOA implementation generates test cases, metrics and measured qualities to

verify that the service performs as described.

Integrate New Component Into SOA – This step integrates the newly

created service into the SOA. Existing workflows and processes may need

 75

modification to incorporate the new component appropriately and maximize the

benefits it provides.

Re-evaluate – This step in the Architecture Loop exists to capture lessons

learned from building the last service. It begins the continuous improvement

effort by assessing the new service’s technical and business usefulness, or

“operational performance.” The technical review compares quality attribute

levels (e.g., security, reliability, scalability, etc.) in the new service to those

sought in the architecture. The SDL also evaluates each service. However, the

SDL review focuses on the service’s internal workings. In contrast, this technical

review identifies architectural changes necessary to rectify problems and prevent

similar shortcomings in future loops. The business review looks at the service’s

functionality and outputs to determine its fit within the workflow. This identifies

modifications to the new service, and existing services, to improve overall

performance.

Adjust Concepts – This step takes what you have learned and revises the

concepts, vision, and technical strategy that shape the architecture. We expect

each pass through the Architecture Loop will bring improved understanding of the

architecture and implemented services. Stakeholders will have first-hand

experience about what can be accomplished and how. Their improved

understanding will likely lead to architectural changes, which restarts the loop at

the “Design SOA” step.

 76

Figure 24. IDeA Architecture Loop

 77

3. Service Development Loop (SDL)
The SDL begins by describing why and how to invoke the service. The

developers must clearly understand the contexts in which the service operates to

implement it effectively. This goal and context awareness describes the “voice of

the customer,” and the cloud at the top of Figure 25 graphically represents it.

Table 4 lists the SDL steps.

Steps Outputs

Identify Functionality and
Quality Attributes

Unconstrained list of Functions and Quality
Attributes

Develop Scenarios for Quality
Attributes and Functionality

List of brief scenarios

Prioritize and Select List of Quality Attributes and Functionalities to be
implemented during current iteration

Identify External Interactions and
Interfaces

Service Interface Descriptions

Identify Measures List of metrics and success thresholds

Develop and Deploy Service
(return to Architecture Loop)

Working service that performs required
functionality with proper quality attributes

Measure and Evaluate Service performance areas for future development
and revision

Review and Adjust Process Process improvements based on lessons learned

Table 4. IDeA Service Development Loop – Steps and Outputs

This loop contains eight steps, with a split after the “Develop and Deploy

Service” step. To continue overall system development, you return to the

Architecture Loop and continue that process with the newly created service,

proceeding to develop the next component. The SDL moves on to measure,

evaluate, improve, and evolve the current service as necessary. It also identifies

ways to adjust the SDL process itself.

 78

Figure 25. IDeA Service Development Loop

Identify Functionality and Quality Attributes – The first step in the SDL

transforms the initial service description, assumptions, and context about the

system state into a detailed functionality list (actions and outputs) and relevant

quality attributes. These items heavily influence the service’s design.

Stakeholders prioritize the functionality and quality attributes in the SDL’s next

steps. This process ensures the appropriate scope of work for the current loop

iteration. The first iteration creates a fairly simple service, focusing on the most

important quality attributes. Future iterations deliver increased complexity until

they meet all service requirements.

Develop Quality Attributes and Functionality Scenarios – This step creates

brief, precise scenarios that make the functionality and quality attributes

concrete. These scenarios ensure the development team and stakeholders

accurately understand what the new service does and how.

Prioritize and Select – The scenarios generated during the previous step

and “voice of the customer” prioritize the functionality and quality attributes. The

stakeholders and development team choose the scenarios to implement during

the current SDL iteration. Because the scenarios directly correspond to

 79

functionality and quality attributes, everyone involved understands the service’s

requirements.

Identify External Interactions and Interfaces – The next step identifies the

external services, systems, and data the service consumes to produce the

desired output. Additionally, it specifies the incoming message type, content,

and format, which define the service invocation methods. Similar details

describe the service’s output. These definitions specify the service’s interfaces.

Select Measures – This step supports continuous improvement by

identifying what aspects to measure to determine if the service provides the

required functionality and quality attributes. Each measurement includes

thresholds that clearly define success or failure.

Develop and Deploy Service – The previous five steps create a logical and

understandable service definition. This step develops and deploys that service to

provide the prioritized functionality and quality attributes, using the proper

interfaces. Following deployment, we return to the Architecture Loop to continue

that process. The SDL also continues with two more steps in the loop.

Measure and Evaluate – This step collects the measurements and

evaluates them based on stated thresholds. This determines whether or not the

service works as expected and meets the users’ needs. Stakeholder feedback

identifies new requirements for future development and revision. The SDL

restarts at the “Identify” step to address existing defects or develop new

requirements.

Review and Adjust Process – Continuous improvement also extends to

the process used to develop the service. The development process trials and

tribulations will result in “lessons learned,” used to improve the SDL during future

loops.

4. IDeA Conclusion
We believe our proposed two-loop method provides the Coast Guard with

a flexible and incremental, design and implementation process. The IDeA

 80

method will immediately deliver useful services, and provide evolutionary

architectural improvement. Each loop cycle will not only develop additional

services but also allows us to improve our developmental methodology as we

learn more about our needs and the technology.

C. ORGANIZE FOR SUCCESS
Designing and implementing a SOA should revolutionize the Coast

Guard’s information technology capabilities and infrastructure. The

organizational impact can and should be equally as dramatic. Consider the

transformation at Amazon.com in 2001. The online retail giant realized their

existing monolithic application could not scale to meet future needs. Amazon

implemented an SOA and organized their numerous development teams around

the services within the SOA. Amazon’s Chief Technical Officer (CTO) Werner

Vogels describes the impact this approach had in the following quote:

The services model has been a key enabler in creating teams that
can innovate quickly with a strong customer focus. Each service
has a team associated with it, and that team is completely
responsible for the service—from scoping out the functionality, to
architecting it, to building it, and operating it. … There is another
lesson here: Giving developers operational responsibilities has
greatly enhanced the quality of the services, both from a customer
and a technology point of view. The traditional model is that you
take your software to the wall that separates development and
operations, and throw it over and then forget about it. Not at
Amazon. You build it, you run it. This brings developers into contact
with the day-to-day operation of their software. It also brings them
into day-to-day contact with the customer. This customer feedback
loop is essential for improving the quality of the service. (Gray)

The Coast Guard operates in the traditional model described by Vogels.

One group envisions each system, another designs it, and a third foists it on the

user. Our traditional approach created our existing stovepipe applications that

don’t meet our current or future needs. We need to seize the opportunity that

SOA provides and break this pattern by changing our system development

organization to replicate Amazon’s approach.

 81

The first step in our organizational makeover designates the chief

architect. This person must have a credible architectural vision and the ability to

communicate it to others in a clear and convincing way. He or she will lead the

architecture design team to produce the overall SOA2, including guidance other

development teams will follow. In addition, this team will act as the steering

committee. The team will proactively manage the service development,

deployment, and improvement efforts that occur during the IDeA method

iterations. They will also identify the resources required to implement and

maintain the CGC2 SOA. These resources include hardware, software,

personnel, training, and other funding items.

Continuing to emulate Amazon’s approach, we will have each existing

organizational entity develop services within its own domain. These entities will

form development teams that create, deploy, maintain and evolve services using

the standards and guidance from the chief architect. For example, the Coast

Guard Operations Systems Center (OSC) owns our databases and therefore

should produce the data and enterprise business services. The

Telecommunications and Information Systems Command (TISCOM) should

produce network and security services and propose overall system policy

standards. The Coast Guard Command and Control Engineer Center (C2CEN)

should produce the operational tasking, geospatial display, and sensor

monitoring services. These three commands would also collaborate to share

lessons learned and propose modifications to the standards and polices that the

chief architect establishes.

D. BEST PRACTICES AND WORST PRACTICES
This section continues our “learning from others” approach to implement

the CGC2 SOA successfully. While researching and writing this thesis, we

noticed several recurring suggestions that we should pay careful attention to,

understand and use. The diagram below contains those fundamental “best

2 We think the SOA presented in Chapter 3 provides an excellent starting point.

 82

practices” and “worst practices” that various companies and individuals working

in the SOA marketplace have identified.

Figure 26. SOA Best Practices and Worst Practices

Know when to use services – This best practice requires that we explicitly

define the extent to which we will use services. Using a Web service does not

require an entirely new application architecture. SOA’s loosely coupled design

allows the limited addition of services without a negative impact on the remaining

application architecture. (Erl 448) The corollary to this best practice advises us

to “know when to avoid services.” The “Technical Strategy” and “Design SOA”

Architecture loop steps, introduced earlier in this chapter, apply these two best

practices. We actively select what to create in each service development cycle.

Services will not randomly spring up across the Coast Guard’s enterprise

architecture.

Think big but start small – This best practice appeared in almost

everything we read. “Be selective. Don’t start with a massive project that

involves a cast of thousands. Think big but start with a small project. Focus on a

 83

project that can highlight the clear benefits of SOA like reworking a small set of

key business processes to improve their flexibility.” (Coticchia 8) The IDeA

method fully supports this best practice. Starting small validates the architecture

while giving the organization value, realized as usable services. We don’t want

to develop a collection of fragmented services. To avoid this we need to “create

the architecture and deploy specific services in phases, perhaps focusing on one

application domain at a time or choosing projects based on business urgency.”

(Gruman)

Replace all legacy systems at once – This worst practice states that

migrating the entire enterprise to SOA in one large project “… is a recipe for

disaster. Theoretically, it may seem like a good idea to jump right into SOA

implementation, ripping out and replacing all existing systems at once. SOA

technology is new, exciting and hugely beneficial, and it’s easy to get carried

away.” (Foody 28,29) The Coast Guard’s SOA implementation plan should

migrate our entire enterprise to SOA over many years. The IDeA method’s

incremental, evolutionary approach avoids this worst practice.

Build on what you have – This best practice considers “… reusing legacy

logic before replacing it. Web services can let you take advantage of what you

already have through the use of adapters and service layers.” (Erl 451) Each

IDeA method iteration should reuse legacy application functionality and data

wherever possible. For example, the AOPS database records asset employment

data. It’s a burden for the all the organizational levels to keep current. We can

transform this database from a historical archive into the Coast Guard’s assets

status board.

Use SOA to streamline business processes – This best practice

capitalizes on SOA’s inherently flexible and interoperable model for hosting

application functionality. SOAs provide an opportunity to rethink and improve

business processes. The Coast Guard should grasp this opportunities to

streamline its business processes. Continuing the AOPS example, the database

update could be worked into every business process that tasks assets and

 84

impacts their employment category. This would streamline a currently disjointed

work flow.

Incorporate standards – This best practice suggests using the industry

Web service standards (W3C, OASIS) as the standards for the Coast Guard’s

SOA. “In an enterprise, this can potentially translate into a standardized system

for navigating: application logic, integration architectures, corporate data stores,

and parts of the enterprise infrastructure.” (Erl 454) The initial Architecture Loop

iteration should identify which standards will be used.

Deviate from industry standards – Modifying those industry standards to fit

within current system configuration creates more problems than it solves. This

worst practice occurs when people try to save time and money during the current

development cycle. However, standards exist for a reason; modifying them can

cause unintended, severe interoperability issues. Customizing standards

requires special code at every affected service or node to function properly. This

creates brittle connections and defeats the purpose of a loosely-coupled SOA.

The Coast Guard should avoid this problem.

Build around a security model – “The functional design needs to be built

upon the security model, not the other way around. Putting together a design,

and perhaps even building a preliminary version of your [system] without serious

consideration for the underlying security model is a common mistake.” (Erl 463)

This best practice recognizes that security often cannot be added to an

architecture or application as an afterthought. The CGC2 SOA requires strong

security. Therefore the Coast Guard must include it in the initial architecture

design.

Design with quality in mind – “This has never been more important than in

an SOA environment. Specifically for a development issue, quality must be

designed into the product not inspected into it.” (Coticchia 9) The Coast Guard

must identify key quality attributes and then properly balance their trade-offs

 85

when designing the SOA. The utility tree in Chapter 3 provides a good starting

point for the Coast Guard.

Organize development resources – This best practice groups

development teams around logical business tasks. “A common mistaken during

development projects is to have one team deliver the Web services and a

different team develops the rest of the application. This approach may make

sense, because you have each team working with technologies that they know

how to use. It can make the resulting application seem disjointed and non-

intuitive to the user.” (Erl 465) Section C above embodies this best practice.

Train developers – This best practice ensures that designers and

developers have the skills necessary to implement the Web services properly.

(Erl 466) Software developers need to understand service-oriented principles and

practices, as well as the Web services technical details. The Coast Guard

should identify and provide the training each development team member

requires. While this costs money, it pays big dividends.

E. SOA’S IMPACT ON QUALITY ATTRIBUTES
While creating the architecture description in Chapter III, we compiled a

list of possible quality attributes. We ranked them based on our personal

judgment about their importance to a Coast Guard command and control system

architecture. Figure 27 below shows this ranking. We selected the top five

quality attributes and used them to develop the utility tree in Chapter III (Figure

8). The other seven quality attributes certainly require some attention when

developing a system based on this architecture. However, we feel that the top

five would most influence the architectural design and should receive greater

attention.

 86

Figure 27. Quality Attribute Importance for CGC2 SOA

A September 2005 report from the Software Engineering Institute (SEI)

addresses the positive and negative effects that an SOA has on a system’s

quality attributes. We assessed the material in that report and then ranked our

top five quality attributes based on SOA’s maturity level. Figure 28 shows the

quality attributes well supported by SOA in green. The color red indicates quality

attributes not well supported by current SOA technologies. We discuss the

impact of these support concerns in the following paragraphs.

Figure 28. SOA Support for Quality Attributes

 87

We have taken the quality attributes from Figure 28 above and quoted the

appropriate sections from the SEI report in Table 5. The “status” column refers

to SOA’s maturity level for the quality attribute. “The color green indicates that

there are known solutions for the SOA based on relatively mature standards and

technology. The color yellow indicates that some solutions exist but need further

research to prove their usefulness in handling the requirements for the quality

attribute. The color red indicates that the standards and technology are

immature and further significant effort is required to fully support the quality

attribute within an SOA.” (O’Brien, Bass, and Merson 22)

Quality Attribute Status Summary

Interoperability Green

“Through the use of the underlying standards, an SOA
provides good interoperability technology-wise overall,
allowing services and applications built in different languages
and deployed on different platforms to interact. However,
semantic interoperability is not fully addressed. The standards
to support semantic interoperability are immature and still
being developed.”

Security Red

“The need for encryption, authentication, and trust within an
SOA approach requires detailed attention within the
architecture. Many standards are being developed to support
security, but most are still immature. If these issues are not
dealt with appropriately within the SOA, security could be
negatively impacted.”

Usability Yellow

“Usability may decrease if the services within the application
support human interactions with the system and there are
performance problems with the services. It is up to the
services users and providers to build support for usability into
their systems.”

Extensibility Green

“Extending an SOA by adding new services or incorporating
additional capabilities into existing services is supported within
an SOA. However, the interface/formal contract must be
designed carefully to make sure that it can be extended, if
necessary, without causing a major impact on the service
users.”

Scalability Yellow

“There are ways to deal with an increase in the number of
service users and the increased need to support more
requests for services. However, these solutions require
detailed analysis by the services providers to make sure that
other quality attributes are not negatively impacted.”

Table 5. SOA Quality Attribute Impact (After: O’Brien, Bass, and Merson Table 1)

 88

The Coast Guard’s architects and implementers need to understand

SOA’s strengths and weakness when designing and building the CGC2 SOA.

Our success depends on our ability to properly identify and address the

limitations of the technology that support the architectural approach. The

following paragraphs provide our specific responses for each quality attribute.

However, we should closely monitor the emergence and improvement of industry

standards and best practices for every quality attribute. Each successive IDeA

loop cycle should selectively implement the standards and best practices

appropriate to our needs.

Interoperability – SOA strongly supports this quality attribute. The SEI’s

concern about semantic interoperability can partially be addressed with

appropriate information exchange data models.

Security – Several web service standards support confidentiality,

authenticity, integrity, and non-repudiation. These standards have been updated

with more mature versions since the SEI report appeared. Therefore we

disagree with the “red” status and would classify it currently as yellow. This

comment does not diminish the security problem’s complexity. We will likely

develop multiple approaches to meet the needs of users that have established

various trust relationships. This quality attribute obviously must be approached

architecturally, incrementally, and without excessive risk, delay, or simplifications

that produce either an overly rigid system or an insecure one. Additionally,

providing the Public Key Infrastructure (PKI) required to implement these

standards will require careful consideration early in the IDeA process.

Extensibility – SOA also strongly supports this quality attribute. The IDeA

method will enforce properly designed interfaces, enabling each service to be

extended without negatively impacting users.

The decisions made by the architects and developers heavily influence the

two remaining quality attributes. Implementing a certain industry standard will

 89

not provide required usability or scalability. However, the Amazon approach

(develop services with the same people that provide the business functionality)

will provide the proper developer motivation and perspective to deliver these

quality attributes.

Usability – Developers address undocumented or vaguely defined

performance dimensions when they understand the unique user requirements for

each service. This inherent awareness of user needs goes a long way to

addressing usability.

Scalability – Amazon, AT&T and British Telecom all have extremely large-

scale SOAs. It’s very important to properly identify and address scalability

requirements early in the IDeA process. However the Coast Guard’s scalability

concerns won’t exceed those of industry-leading SOA adopters.

F. CONCLUSION
Our answer to the second thesis question proposed an iterative method to

design and implement the architecture, logically organize the development

teams, and learn from industry best practices. Taken as a whole, this collection

provides the Coast Guard with a solid foundation to begin designing and

implementing the CGC2 SOA.

 90

THIS PAGE INTENTIONALLY LEFT BLANK

 91

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSION
The Coast Guard Commandant recently mandated that we shift our IT

infrastructure to an SOA. To achieve this, we must carefully determine what our

SOA will look like and how we will successfully build it. This thesis provides the

foundation for both. In Chapter two, we began by defining SOA concepts and

technologies. Many SOA technical standards and enabling software remain

immature, but the industry improves them at a quick and steady pace. We must

monitor their continued advances and adjust our SOA accordingly. In Chapter

three we described how the Coast Guard could implement a command and

control SOA. We included the services, their interactions, the data, and the

quality attributes the architecture must address. Chapters two and three thus

crystallize what the Commandant has mandated.

SOA forces us to change the way we conceive and implement our

information technology, shifting from vertical stove-piped systems to horizontally

integrated ones. In Chapter four, we introduced a two-loop method for

incrementally building the SOA in a way that evolves from the present towards

the constantly moving, desired future state. Focusing on short, clearly defined

implementation cycles allows us to incorporate lessons learned to improve the

architecture, its components, and the way we create them. We reviewed several

industry best practices and common pitfalls, including a recommended

organizational alignment deemed crucial to Amazon’s successful SOA. Finally,

we discussed the impact an SOA has on our chosen quality attributes. Chapter

four thus answers how we should meet the Commandant’s mandate.

We began our thesis research by reading several white papers, from

companies selling SOA software products or consulting services to implement

SOAs. These papers described SOA solving every computer system integration

and data sharing problem in existence. Our further research and practical

experience with the Comprehensive Maritime Awareness JCTD proved

 92

otherwise. Contrary to the advertisements, we cannot simply purchase an SOA

from a vendor or order the Coast Guard’s IT staff to create one. The Coast

Guard’s requirements to reach mobile platforms further complicate matters. We

can not rely on ample internet bandwidth to extend the SOA to boats, aircraft,

and cutters. After finishing our research and thesis work, we conclude that SOA

does not provide “the answer to everything.” Nevertheless, we believe that SOA,

properly managed, can deliver tremendous benefit to the Coast Guard. We think

that Coast Guard can and should use SOA to revolutionize our command and

control.

B. RECOMMENDED FUTURE RESEARCH
While researching and writing this thesis we identified several items that

future NPS thesis students can develop further. We list them below.

1. Coast Guard Data Models
In this thesis we created basic data models for demonstration purposes

only. A graduate student could devote his or her thesis to researching and

developing the data model for the entire CGC2 SOA or merely develop the most

valuable data models for near-term implementation. Either way, this difficult but

crucial effort would require close work with several Coast Guard entities.

2. Planning Services Based on MHS-OPS
The MHS-OPS developers implemented a useful HLS planning and

tasking tool for homeland security. Unfortunately, they built another stovepipe

system. We recommend a thesis student service-enable the MHS-OPS

functionality, at the proper level of abstraction, so all Coast Guard mission areas

can use it.

3. Operations Watchstander Console
The typical Coast Guard command center watchstander has to manage

multiple computer screens connected to many different computer systems. We

envision a single integrated composite application to manage all watchstander

computing and information management tasks. It should manage operational

tasking, checklists and watch logs and ensure the watchstander complies with

 93

Coast Guard regulations and local SOPs. A graduate student could research

and develop all or part of the composite application.

4. PKI for SOA
The Coast Guard must address service and security early in its SOA

development. We need appropriate PKI to issue credentials to users and

services (including end systems) operating in the SOA. The solution to this non-

trivial problem will address an important quality attribute and will be reused in all

Coast Guard SOAs. A graduate student could research the security and PKI

aspects of current DoD SOA implementations and propose a Coast Guard

specific solution. Regardless of graduate research, the Coast Guard needs to

make this an action item for development funding and implementation.

5. XMPP for Coast Guard Command and Control
The United States Marine Corps recently adopted XMPP as its standard

instant messaging protocol. XMPP can provide much more than chat and instant

messaging within an SOA. NPS faculty and students have researched using

XMPP for passing data (e.g., tracks) between battlespace nodes. We

recommend researching XMPP as a means to pass operational tasks (e.g.,

search patterns) between Coast Guard units. The data needs to have proper

formatting for easy transfer into cutter, boat, and aircraft navigation systems.

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

LIST OF REFERENCES

“ABCs of SOA.” CIO.com. 15 Jun. 2006. 13 Mar. 2007.
<http://www.cio.com/abcs/soa_abc.html?action=print>

Allen, Thad W. “Commandant's SITREP 2 - First 100 Days” 20 Dec. 2006.
<http://www.uscg.mil/comdt/all%5Fhands/message5.asp>

America’s Maritime Guardian. Coast Guard Publication 1. Revision 1 Jan. 2002.

“Average Day.” Coast Guard Fact File. United States Coast Guard. 20 Dec.
2006. <http://www.uscg.mil/hq/g-cp/comrel/factfile/index.htm>

Bayne, Jay S. Creating Rational Organizations: Theory of Enterprise Command
and Control. Cafepress.com, 2006.

Clements, Paul, Rick Kazman, and Mark Klein. Evaluating Software
Architectures: Methods and Case Studies. Boston, MA: Addison-Wesley,
2002.

Command Center Program Manual. Coast Guard Commandant Instruction
Manual (draft). 13 Nov. 2006.

Common Operational Picture, Operational Requirements Document. USCG
Common Operational Picture Working Group. Ver 1.0. 04 Aug. 2005.

Coticchia, Greg. “The Seven Secrets of SOA Success.“ SOA Web Services
Journal 6.7 (2006): 8-9. 01 Nov. 2006. <http://webservices.sys-
con.com/read/250498.htm>

DoDAF Deskbook. DoD Architecture Framework Working Group. Ver 1.0. 09
Feb. 2004.

“Department Subcomponents and Agencies.” Department of Homeland Security
Web Site. U.S. Department of Homeland Security. 08 Mar. 2007.
<http://www.dhs.gov/xabout/structure/index.shtm>

Erl, Thomas. Service-oriented Architecture: A Field Guide to Integrating XML and
Web Services. Upper Saddle River, NJ: Prentice Hall Professional
Technical Reference, 2004.

Gabriel, Jim. “Best Practices in Integrating Data Models for SOA.” SOA World
Magazine. 02 Feb. 2005. 27 Feb. 2007. <http://webservices.sys-
con.com/read/48031.htm>

 96

Gray, Jim. “A Conversation with Werner Vogels.” ACM Queue. Vol. 4, No. 4. May
2006. 13 Mar. 2007.
<http://www.acmqueue.com/modules.php?name=Content&pa=printer_frie
ndly&pid=388&page=1>

Gruman, Galen. “SOA’s True Challenge – It Ain’t Technology” CIO.com. 01 May
2006. 10 Nov. 2006.
<http://www.cio.com/archive/050106/et_main.html?action=print>

Hamilton, Alexander. “The Federalist (No. 12), The Utility of the Union In Respect
to Revenue.” The New York Packet. 27 Nov. 1787. 20 Dec. 2006.
<http://www.constitution.org/fed/federa12.htm>

Hayes-Roth, Frederick. Hyper-Beings: How Intelligent Organizations Attain
Supremacy through Information Superiority. Booklocker.com, 2006.

Hutchins, Jeffery. “Enabling Oracle Integration B2B and Oracle BPEL Process
Manager Interoperability.” Oracle SOA Suite Best Practices. Dec. 2006.
Oracle Technology Network. 23 Feb. 2007.
<http://www.oracle.com/technology/tech/soa/soa-suite-best-practices/b2b-
bpel-integration.html>

Kurzweil, Ray. The Age of Spiritual Machines. New York: Viking, 1999.

Lau, Yun-Tung. “Service-Oriented Architecture and the C4ISR Framework.”
CrossTalk. Sep. 2004. 11-14. 15 Jan. 2007.
<http://www.stsc.hill.af.mil/crosstalk/2004/09/0409lau.html>

“Missions.” Coast Guard Web Site. United States Coast Guard. 20 Dec. 2006.
<http://www.uscg.mil/top/missions/>

O’Brien, Liam, Len Bass, and Paulo Merson. “Quality Attributes and Service-
Oriented Architectures.” Software Engineering Institute Technical Note.
CMU/SEI-2005-TN-014. Sep. 2005.
<http://www.sei.cmu.edu/publications/documents/05.reports/05tn014.html>

“Published Software Architecture Definitions.” Software Engineering Institute. 28
Jan. 2007.
<http://www.sei.cmu.edu/architecture/published_definitions.html>

“SAML.” oasis-open.org. 15 Feb. 2007. 08 Mar. 2007. <http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security>

“Software Architecture Glossary.” Software Engineering Institute. 21 Dec. 2006.
< http://www.sei.cmu.edu/architecture/glossary.html>

 97

“Stovepipe System.” Component Software Glossary. 03 Jan. 1997. Object
Services and Consulting, Inc. 21 Dec. 2006.
<http://www.objs.com/survey/ComponentwareGlossary.htm#StovepipeSys
tem>

“The SOA Vision.” SOA Vision.com. 03 Jan. 2007.
<http://www.soasystems.com/soa1.asp>

“Web Services Wrapper.” Actional.com. 08 Mar. 2007.
<http://www.actional.com/resources/whitepapers/SOA-Worst-Practices-
Vol-I/Web-Services-Wrapper.html>

“WS-Addressing.” w3.org. 03 Aug. 2004. 08 Mar. 2007.
<http://www.w3.org/Submission/2004/05/>

“WS-Coordination.” oasis-open.org. 08 Feb. 2007. 08 Mar. 2007. <
http://docs.oasis-open.org/ws-tx/wscoor/2006/06/wstx-wscoor-1.1-rddl-
200702.htm>

“WS-Eventing.” Ibm.com. Aug. 2004. 08 Mar. 2007. <
ftp://www6.software.ibm.com/software/developer/library/ws-eventing/WS-
Eventing.pdf>

“WS-Federation.” Networkworld.com. 08 Mar. 2007.
<http://www.networkworld.com/details/6284.html>

“WS-Manageability.” Ibm.com. 10 Sep. 2003. 08 Mar. 2007.
<http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
manage/ws-manage.pdf>

“WS-Notification.” oasis-open.org. 01 Oct. 2006. 08 Mar. 2007.
<http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn>

“WS-ReliableMessaging.” oasis-open.org. Aug. 2006. 08 Mar. 2007.
<http://docs.oasis-open.org/ws-rx/wsrm/200608/wsrm-1.1-rddl-
200608.html>

“WS-SecureConversation.” oasis-open.org. 29 Nov. 2006. 08 Mar. 2007.
<http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-
secureconversation-1.3-spec-cs-01.htm>

 “WS-Security.” oasis-open.org. 01 Feb. 2006. 08 Mar. 2007. <http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf>

 98

"WS-SecurityPolicy." oasis-open.org. 08 Dec 2005. 08 Mar. 2007.
<http://www.oasis-open.org/committees/download.php/15979/oasis-wssx-
ws-securitypolicy-1.0.pdf>

 “WS-Trust.” oasis-open.org. 06 Sep. 2006. 08 Mar. 2007. http://docs.oasis-
open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec-cd-01.html

www.niem.gov. 01 Mar. 2007. National Information Exchange Model. 02 Mar.
2007. <http://www.niem.gov/index.php>.

“XML.” Bytowninternet.com. 08 Mar. 2007.
<http://www.bytowninternet.com/glossary#xml>

 99

BIBLIOGRAPHY

Allen, Thad W. State of the Coast Guard Address. The Renaissance Hotel,
Washington, DC. 13 Feb. 2007 01 Mar. 2007.
<http://www.uscg.mil/comdt/speeches/docs/transcript.pdf>

BEA White Paper. Jul. 2005. Domain Model for SOA. BEA Systems, Inc. 06 Dec.
2006.
<http://bea.com/framework.jsp?CNT=research_whitepapers.htm&FP=/con
tent/solutions/soa/library/>

BEA White Paper. Jun. 2005. The Advent of a New Service Infrastructure. BEA
Systems, Inc. 06 Dec. 2006.
<http://bea.com/framework.jsp?CNT=research_whitepapers.htm&FP=/con
tent/solutions/soa/library/>

BEA White Paper. The Integration Journey – A Field Guide to Enterprise
Integration for SOA. BEA Systems, Inc. 06 Dec. 2006.
<http://bea.com/framework.jsp?CNT=research_whitepapers.htm&FP=/con
tent/solutions/soa/library/>

BEA White Paper. The Move Toward Shared Services. BEA Systems, Inc. 06
Dec. 2006.
<http://bea.com/framework.jsp?CNT=research_whitepapers.htm&FP=/con
tent/solutions/soa/library/>

BEA White Paper. Aug. 2005. Turning IT Vision Into Business Value. BEA
Systems, Inc. 06 Dec. 2006.
<http://bea.com/framework.jsp?CNT=research_whitepapers.htm&FP=/con
tent/solutions/soa/library/>

Besemer, David. “Keep to the Original Intent of SOA.“ SOA Web Services
Journal 6.11 (2006): 36-37. 05 Jan. 2007 <http://webservices.sys-
con.com/read/314107.htm>

Bjorklund, Gus. “Did You Know There’s a ‘C’ in SOA?” SOA Web Services
Journal 6.9 (2006): 36-38. 01 Nov. 2006. <http://soa.sys-
con.com/read/284584.htm>

Booth, David et al. “Web Services Architecture.” World Wide Web Consortium.
11 Feb. 2004. 08 Mar. 2007. <http://www.w3.org/TR/ws-arch/>

Chappell, David A. Enterprise Service Bus. Sebastopol, CA: O’Reilly, 2004.

 100

Croom, Charles E., Jr. “Service-Oriented Architectures in Net-Centric
Operations.” CrossTalk. Jul. 2006. 13-15. 15 Jan. 2007
<http://www.stsc.hill.af.mil/crosstalk/2006/07/0607croom.html>

Daconta, Michael C., Leo J. Obrst, and Kevin T. Smith. The Semantic Web: A
Guide to the Future of XML, Web Services, and Knowledge Management.
Indianapolis, IN: Wiley Publishing, 2003.

Erl, Thomas. Service-Oriented Architecture: Concepts, Technology, and Design.
Upper Saddle River, NJ: Prentice Hall Professional Technical Reference,
2005.

Foody, Dan. “SOA Worst Practices.“ SOA Web Services Journal 6.11 (2006): 28-
30. 05 Jan. 2007. <http://webservices.sys-con.com/read/314095.htm>

Foody, Dan. “The Challenges of SOA.“ SOA Web Services Journal 6.9 (2006): 8-
9, 24. 05 Jan. 2007. <http://webservices.sys-con.com/read/284550.htm>

Hayes-Roth, Frederick, and Daniel Amor. Radical Simplicity: Transforming
Computers Into Me-Centric Appliances. Upper Saddle River, NJ: Prentice
Hall PTR, 2002.

InfoWorld White Paper. From Pilot to Payoff: Service-Oriented Architecture Hits
Its Stride. BEA Systems, Inc. 21 Nov. 2006.
<http://bea.com/framework.jsp?CNT=research_whitepapers.htm&FP=/con
tent/solutions/soa/library/>

“Intro to Software Quality Attributes.” SoftwareArchitectures.com. 12 Jan. 2007.
<http://www.softwarearchitectures.com/one/Designing+Architecture/78.as
px>

Jackson, Joab. “At Your Service.” Government Computer News. 24 Apr. 2006.
10 Nov. 2006. <http://www.gcn.com/print/25_9/40462-1.html>

Kodali, Raghu R., “What is Service-Oriented Architecture?” JavaWorld. 13 Jun.
2005. 08 Jan. 2007. <http://www.javaworld.com/javaworld/jw-06-2005/jw-
0613-soa.html>

Linthicum, David S. “SOA and Data Integration.“ SOA Web Services Journal 6.8
(2006): 14, 17. 10 Nov. 2006. <http://webservices.sys-
con.com/read/275055.htm>

Maritime Law Enforcement Manual. Coast Guard Commandant Instruction
Manual 16247.1C. Revision Aug. 2003.

Martens, China. “Users Offer SOA Advice: Start Small.” IDG News Service. 10
Nov. 2006. <http://www.cio.com/blog_view.html?CID=26583>

 101

McComb, Dave. Semantics in Business Systems: The Savvy Manager’s Guide:
the Discipline Underlying Web Services, Business Rules, and the
Semantic Web. San Francisco, CA: Morgan Kaufmann Publishers, 2004.

McGovern, David. Embracing SOA: The Benefits of Integration Independence.
TIBCO Software Whitepaper. 08 Jan. 2007.
<http://www.tibco.com/solutions/soa/resource_library.jsp>

Narang, Sanjay. “Web Services, WS-* Specifications, and Interoperability.“ SOA
Web Services Journal 6.11 (2006): 20-26. 05 Jan. 2007.
<http://opensource.sys-con.com/read/314083.htm>

Pasley, James. “The ESB in Your SOA.“ SOA Web Services Journal 6.11 (2006):
16-18. 05 Jan. 2007. <http://webservices.sys-con.com/read/314082.htm>

Rhody, Sean. “The SOA Dichotomy.“ SOA Web Services Journal 6.8 (2006): 5.
02 Nov. 2006. <http://webservices.sys-con.com/read/275011.htm>

Sagar, Ajit. “How Much SOA?“ SOA Web Services Journal 6.8 (2006): 6. 02 Nov.
2006. <http://webservices.sys-con.com/read/275038.htm>

Shaffer, Dave. “Best Practices for Building SOA Applications (part 1).“ SOA Web
Services Journal 6.8 (2006): 34-37. 02 Nov. 2006.
<http://webservices.sys-con.com/read/275111.htm>

Shaffer, Dave “Best Practices for Building SOA Applications (part 2).“ SOA Web
Services Journal 6.9 (2006): 48-50. 02 Nov. 2006.
<http://webservices.sys-con.com/read/284591.htm>

Sun White Paper. Mar. 2006. The SOA Platform Guide: Evaluate, Extend,
Embrace.. Sun Microsystems. 12 Jan. 2007.
<http://www.sun.com/software/whitepapers/index.xml#2>

Sun White Paper. Mar. 2006. Systematic Development and the Serve Oriented
Architecture. Sun Microsystems. 12 Jan. 2007.
<http://www.sun.com/software/whitepapers/index.xml#2>

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

APPENDIX A. U.S. COAST GUARD ORGANIZATIONAL
RELATIONSHIPS

A. WITHIN THE FEDERAL GOVERNMENT
As a component within the Department of Homeland Security, the Coast

Guard “protects the public, the environment, and U.S. economic interests—in the

nation’s ports and waterways, along the coast, on international waters, or in any

maritime region as required to support national security.” (“Department

Subcomponents and Agencies”)

B. WITHIN THE COAST GUARD
The Coast Guard has divided its operational commands into geographic

zones, with the Atlantic Area and Pacific Area commanders reporting to the

Commandant. Figure 29 shows the Coast Guard’s top level operational

command structure.

Figure 29. Coast Guard Operational Chain of Command

 104

Both Areas are divided into Districts that cover several hundred miles of

coastline. They generally correspond to a geographic region, for example the

First Coast Guard District encompasses New England, stretching from Maine

through New Jersey.

Each District is sub-divided into Sectors, shown in the Figure 30. Each

Sector has several operational units under its command.

Figure 30. U.S. Coast Guard Sector Commands (From: Command Center

Program Manual Figure 2-1-1)

C. WITHIN THE SECTOR

Each Sector command center (CC) performs the duties shown in Figure

31 and described below:

 105

Figure 31. Sector Command Center Duties (After: Command Center Program

Manual Figure 2-2-2)

CDO: “The CDO is responsible for the performance of the watch in the

execution of its primary functions and ensuring proper coordination of operational

plans for a specific operational period.”

Situation Unit: “The Situation Unit is primarily responsible for monitoring

the AOR, tracking the activities and readiness of blue forces, collecting and

fusing of important information, and developing the local tactical picture.”

Operations Unit: “The Operations Unit is responsible for the planning and

execution of incident response missions conducted within the AOR. At the

different levels of CCs, these responsibilities may translate into different

positions. For example, some District and Sector CCs may have a staffed Law

Enforcement watch position because of the elevated operational tempo

(OPTEMPO) in LE cases within the AOR. Others rely on an on-call Law

Enforcement Duty Officers (LEDOs) for SME guidance during LE cases.

Additionally, District and Area CCs may elect to assign an officer with LEDET,

MSST, or MSRT experience to plan and monitor use of Special Missions assets.”

Comms Unit: “The Comms Unit is responsible for monitoring required

voice frequencies, maintaining communication guard requirements, and, as

 106

directed, executing tactical communication for response operations.” (Command

Center Program Manual 55-56)

D. CONCLUSION
The Coast Guard Commandant recently announced changes to our

command structure. The information in this appendix, particularly at the District

and Area level will change in the near future. However, we feel that this

appendix allows non-Coast Guard readers to understand our current

organizational layout as it is discussed throughout the thesis.

 107

APPENDIX B. COMMUNICATIONS INTEROPERABILITY

A. NETWORK-CENTRIC
The Coast Guard cannot implement Network Centric Operations (NCO)

without a network, or more specifically a network with the right capabilities that

connects the right people and things. It is extremely unlikely that a single

program or platform can bring about a transformation of the Coast Guard’s IT

infrastructure to close the gap between what we have and what we need.

Therefore, it is imperative that we, as an organization, share a common view of

these requirements and ensure that all current and future acquisitions work

toward a common goal. In short, we need a consistent procurement approach

that delivers components that meet these requirements.

Current command and control methodology places the various sense,

decide, and act systems at the center of the diagram. Network Centric

Operations places the network at the center as the key enabling technology.

This perspective views all attached devices, services, and systems as nodes on

the network. To enable NCO, the network definition includes: internet protocol

(IP) routing, support for public key infrastructure (PKI), and message prioritization

options for quality of service (QoS) beyond “best effort” delivery. It also means

that all nodes and devices have three types of interfaces: network interfaces,

management interfaces, and messaging interfaces.

While the Coast Guard has generally done well acquiring network

infrastructure with the internet protocol (IP) data network reaching most users.

However, the fatal exception occurs at the “last mile.” The IP network has not

been extended out to small boats, patrol boats, and aircraft. Further, many of the

operational end systems such as radars on large cutters have not been attached

to the unit's LAN. The Coast Guard’s lag to extend network reach to mobile

assets stems from the complexity of the problem itself. The combination of the

operating environment, distance, mobility, RF spectrum, and availability of

inexpensive hardware/software products all conspire to make this difficult. There

 108

are some initial solutions out in the marketplace but many have not reached the

level of maturity to allow the Coast Guard to implement them on a large scale.

The Naval Postgraduate School (NPS) has done research and experiments

using products conforming to IEEE 802.16 standard, but the experimentation has

not shown that it meets all Coast Guard requirements. However, 802.16 is a

rapidly emerging technology that may provide a viable solution to the “last mile”

problem. Regardless of the how it gets done, the Coast Guard needs to send

and receive data from its boats, cutters, and aircraft.

B. REQUIRED NETWORK CAPABILITIES
Before diving into network requirements it is prudent to define what a

network is. The network is all of the plumbing that connects the end systems

together. The plumbing consists of the switches, routers and all of the connecting

wiring.

These requirements apply to the network on two levels, the local area

network (LAN) within one unit (boat, cutter, aircraft, boarding team, etc.) and then

the wide area network (WAN) connecting all units. The LAN connects all “sense,

decide, act” systems within a unit, examples include: GPS, radar, radios, and

cameras. A router connects the single unit to all other units via the WAN. In

addition to the necessary bandwidth to transmit the messages required by the

SOA, both the LAN and WAN must have the following:

1. Availability
Availability is critical to effective network communications. When we say

availability we mean that you must not have a single point of failure. Redundant

data paths may not be feasible in every situation but it is important along crucial

communication routes. Capacity is another important and often overlooked

aspect of availability. A working link that cannot handle the bandwidth

requirements is the same as no link at all for most users.

2. Quality of Service (QoS)
Quality of Service control mechanisms provide different priority to different

users or data flows. QoS guarantees become more important when the network

 109

capacity is limited, like the Coast Guard’s “last mile” reach to mobile assets. This

vital concept has not been addressed with the CGDN, which relies on traditional

“best effort” that performance is dependent on the current network traffic load.

However, as services are added and users rely on data feeds for mission critical

situations, prioritization of packets will become necessary. For example

messages that contain the details of a search pattern must be received quickly

and in tact. Effectively balancing network load will be critical for low-bandwidth

users (small boats and aircraft) who will rely on QoS.

3. Public Key Infrastructure (PKI)
Traditionally the Coast Guard has relied on transport security, or

encrypting the data pipes, for information security.

However, in a SOA the messages themselves require more robust

security capabilities, especially when interacting with data sources outside the

Coast Guard network. The Coast Guard must also interact with agencies outside

the Federal Government and the Military. This adds a level of complexity to the

security equation.

 Public Key Infrastructure provides the foundation for multiple security

qualities including:

• Authenticity – the sender’s identification is correct

• Confidentiality – authorized users are granted access to information

and unauthorized users are denied access.

• Integrity – the information has not been tampered with during the

transit between sender and receiver.

• Non-repudiation – the sender can not refute sending the message

and the receiver can not refute delivery.

With PKI in place, the services that make up the SOA can request and

provide the required security qualities. PKI provides encryption at the source so

 110

that unprotected data never touches the network and it stays protected until it

reaches the destination.

4. SNMP for Remote Management
If the network is the enabling technology at the center of our operations,

then we need to properly monitor and manage its performance. Network

management systems (NMS) use the Simple Network Management Protocol

(SNMP) to monitor network-attached devices for conditions that warrant

administrative attention. SNMP uses software agents that reside on the network

devices to translate local management information into common format.

SNMP agents need to be provisioned onto all the components of the

information systems by default. The NMS monitors the network and generates

alarms when conditions are not within defined parameters. This is extremely

important for mobile users with fragile connections.
C. WEB SERVICES STACK

The final requirement is a method for distributing the data. This thesis

describes a services oriented architecture (SOA) for command and control where

the data is exchanged in XML formatted messages between services. The World

Wide Web Consortium’s Web Services Architecture Working Group defined

technical standards to ensure interoperability for SOAs. The Working Group

divided these standards into the following six areas: processes, descriptions,

messages, communications, security and management: Figure 32 shows a

modified version of their Web Services Architecture Stack diagram.

 111

Figure 32. Web Services Architecture Stack (After “Web Services Architecture”

Figure 3-1)

1. Process Layer
The Process layer describes how providers publish services and

requestors/consumers discover them.

2. Description Layer
The Description layer describes how the service provider communicates

the specifications for invoking the Web service to the service requestor

3. Messages Layer
The Messages layer describes how the services pass information in the

form of a message

4. Communications Layer
The Communications layer describes how messages are physically

transported across the network.

5. Security
Security occurs at all layers in the stack and it provides authenticity,

integrity, confidentiality, and non-repudiation.

 112

6. Management
Management, like Security, occurs across all layers in the stack.

Management provides methods for monitoring and managing services and

business processes.

 113

APPENDIX C. SEARCH PATTERN WEB SERVICE
SOURCE CODE

A. CODE OVERVIEW
These Java classes provide the search pattern Web service. The

SearchPattern class is the actual Web service code. It calls methods from the

Search class. The methods in the Search class are ParallelSearch, SectorSearch

and SquareSearch. The Search class calls methods from the Nav class to

calculate distance and bearing. The Position class is the instantiation class for

the position object that is the core component of all searches. The WSDL

provides the necessary information to the client so that it may consume the

service. It defines which functions may be called and the parameters that are

required to call them.

B. SEARCH PATTERN CLASS

/*
 * SearchPattern.java
 *
 * Created on November 20, 2006, 1:08 PM
 *
 */

package mil.uscg.nav;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebService;

/**
 *
 * @author Bob Creigh
 */
@WebService()
public class SearchPattern {
 /**
 * Web service operation
 */
 @WebMethod
 public Object parallelSearchWS(@WebParam(name = "lat") double lat, @WebParam(name =
"lon") double lon, @WebParam(name = "length") double length, @WebParam(name = "width")
double width, @WebParam(name = "ma") double ma, @WebParam(name = "ts") double ts) {
 Search search = new Search();
 String posit = lat + "\t" + lon + "\n";
 int i = 0;
 search.ParallelSearch(lat, lon, ma, width, length, ts);
 for(i=0;i<search.size();i++){

 114

 posit = posit + (search.get(i).getLat()) + "\t" + (search.get(i).getLon()+
"\n");
 }

 return posit;
 }

 /**
 * Web service operation
 */
 @WebMethod
 public Object sectorSearchWS(@WebParam(name = "lat") double lat, @WebParam(name =
"lon") double lon, @WebParam(name = "theta") double theta, @WebParam(name = "radius")
double radius, @WebParam(name = "crs") double crs) {
 Search search = new Search();
 String posit = lat + "\t" + lon + "\n";
 int i = 0;
 search.SectorSearch(lat, lon, theta, radius, crs);
 for(i=0;i<search.size();i++){
 posit = posit + (search.get(i).getLat()) + "\t" + (search.get(i).getLon()+
"\n");
 }

 return posit;
 }

 /**
 * Web service operation
 */
 @WebMethod
 public Object squareSearchWS(@WebParam(name = "lat") double lat, @WebParam(name =
"lon") double lon, @WebParam(name = "sqCount") double sqCount, @WebParam(name = "ts")
double ts, @WebParam(name = "crs") double crs) {
 Search search = new Search();
 String posit = lat + "\t" + lon + "\n";
 int i = 0;
 search.ExpSquareSearch(lat, lon, sqCount, crs, ts);
 for(i=0;i<search.size();i++){
 posit = posit + (search.get(i).getLat()) + "\t" + (search.get(i).getLon()+
"\n");
 }

 return posit;
 }

}

C. SEARCH CLASS
/*
 * Search.java
 *
 * Created on September 8, 2006, 10:23 PM
 *
 */

package mil.uscg.nav;
import java.util.*;

/**
 *
 * @author Bob Creigh
 */
public class Search {
List<Position> searchList = new ArrayList<Position>();

 /** Creates a new instance of Search */
 public Search() {
 }

 115

 public void add(Position pos){
 searchList.add(pos);
 }

 public int size(){
 return searchList.size();
 }

 public Position get(int i){
 return searchList.get(i);
 }

 public void ParallelSearch(double lat, double lon, double ma, double width, double
length, double ts){
 /** Generate Parallel Search Pattern Positions from parameters **/
 int legs = (int)((length-ts)/ts)/2;
 double legLength = width - ts;
 double dist[] = new double[4];
 double tk[] = new double[4];
 double curLat = lat;
 double curLon = lon;
 int posCount = 0;
 int i, j;
 Position newPos = new Position();

 dist[0] = legLength;
 dist[1] = ts;
 dist[2] = legLength;
 dist[3] = ts;

 tk[0] = ma - 90;
 if (tk[0] < 0){tk[0] = tk[0] + 360;};
 tk[1] = ma;
 tk[2] = tk[0] + 180;
 if (tk[2] > 360){tk[3] = tk[3] - 360;};
 tk[3] = ma;

 for (i = 0;i < legs; i++){
 for(j=0;j<4;j++){
 newPos = NavClass.posFromDistBrg(curLat, curLon, dist[j], tk[j]);
 curLat = newPos.getLat();
 curLon = newPos.getLon();
 searchList.add(newPos);
 }
 }
 newPos = NavClass.posFromDistBrg(curLat, curLon, dist[0], tk[0]);
 searchList.add(newPos);
 }

 public void SectorSearch(double lat, double lon, double theta, double radius, double
crs){
 double cll = (radius / 60.0) * theta; // Cross Leg Length
 double ncl = 180.0 / theta; // # Number of Cross Legs
 double nlegs = ncl * 2; // # Number of Legs
 double cca = (theta / 2.0) + 90.0; // # Course Change Angle
 int cllCount = 0; // # Keep track of cross legs
 double tk = crs;
 double dist[] = new double[4];
 Position newPos = new Position();
 int x = 0;

 double curLat = lat;
 double curLon = lon;

 dist[0] = radius;
 dist[1] = cll;
 dist[2] = radius;

 116

 while (cllCount < ncl){
 for (x=0; x < 4; x++){
 newPos = NavClass.posFromDistBrg(curLat, curLon, dist[x], tk);
 curLat = newPos.getLat();
 curLon = newPos.getLon();
 searchList.add(newPos);

 if (x < 2){
 tk += cca;
 if (tk >= 360){
 tk = tk - 360.0;
 }
 }
 }

 cllCount += 1;
 }
 }

 public void ExpSquareSearch(double lat, double lon, double sqCount, double crs,
double ts){
 /** Generate Parallel Search Pattern Positions from parameters **/
 double legLength = ts;
 double tk = crs;
 double curLat = lat;
 double curLon = lon;
 Position newPos = new Position();

 int i, j;

 for (i = 0;i < sqCount; i++){
 for(j=0;j<4;j++){
 newPos = NavClass.posFromDistBrg(curLat, curLon, legLength, tk);
 curLat = newPos.getLat();
 curLon = newPos.getLon();
 searchList.add(newPos);

 tk+= 90;
 if (tk >= 360){
 tk = tk - 360;
 }

 if (j==1){
 legLength+= ts;
 }
 if (j==3){
 legLength+= ts;
 }
 }
 }

 }

}

D. NAV CLASS
/*
 * NavClass.java
 *
 * Created on September 7, 2006, 9:52 AM
 *
 */

 117

package mil.uscg.nav;
import java.util.ArrayList;

/**
 *
 * @author Bob Creigh creigh
 */
public class NavClass {

 /** Creates a new instance of NavClass */
 public NavClass() {
 }

 public static Position posFromDistBrg(double aLat, double aLon, double aDist, double
aBrg) {
 /** Calculate the Lat and Lon with a Distance and Bearing **/
 Position newPos = new Position(0,0);
 double lat = Math.toRadians(aLat);
 double lon = 0-Math.toRadians(aLon);
 double dist = (Math.PI/(180*60))*aDist;
 double brg = Math.toRadians(aBrg);

 double newLat;
 double newLon;

 newLat =
Math.toDegrees(Math.asin(Math.sin(lat)*Math.cos(dist)+Math.cos(lat)*Math.sin(dist)*Math.c
os(brg)));

 newLon = 0-Math.toDegrees(((lon - Math.asin(Math.sin(brg) *
Math.sin(dist)/Math.cos(lat))+Math.PI) % (2*Math.PI))-Math.PI);

 newPos.setLat(newLat);
 newPos.setLon(newLon);

 return newPos;
 }

}

E. POSITION CLASS
/*
 * Position.java
 *
 * Created on September 7, 2006, 10:17 AM
 *
 */

package mil.uscg.nav;

/**
 *
 * @author Bob Creigh
 */
public class Position {
 private double Lat;
 private double Lon;

 /** Creates a new instance of Position */
 public Position(double aLat, double aLon) {
 Lat = aLat;
 Lon = aLon;
 }

 public Position() {
 }

 public void setLat(double aLat){

 118

 Lat = aLat;
 }

 public void setLon(double aLon){
 Lon = aLon;
 }

 public double getLat(){
 return Lat;
 }

 public double getLon(){
 return Lon;
 }

 public static String LatToDegMin(double lat){
 double deg = Math.floor(lat);
 double min = (lat - deg) * 60;
 String out = "";

 if (deg > 0){
 out = String.format("N%02d - %#04f",(int)deg, min);
 }
 else{
 out = "S"+ (int)deg + "-" + min;
 }

 return out;
 }

 public static String LonToDegMin(double lon){
 double deg = Math.floor(lon);
 double min = (lon - deg) * 60;
 String out = "";

 if (deg > 0){
 out = "E"+ (int)deg + "-" + min;
 }
 else{
 out = "W"+ (int)deg + "-" + min;
 }

 return out;
 }
}

F. WEB SERVICE DESCRIPTION LANGUAGE (WSDL)
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://nav.uscg.mil/" name="SearchPatternService"
xmlns:tns="http://nav.uscg.mil/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://nav.uscg.mil/"
schemaLocation="SearchPatternService_schema1.xsd"/>
 </xsd:schema>
 </types>
 <message name="parallelSearchWS">
 <part name="parameters" element="tns:parallelSearchWS"/>
 </message>
 <message name="parallelSearchWSResponse">
 <part name="parameters" element="tns:parallelSearchWSResponse"/>
 </message>
 <message name="sectorSearchWS">
 <part name="parameters" element="tns:sectorSearchWS"/>
 </message>
 <message name="sectorSearchWSResponse">

 119

 <part name="parameters" element="tns:sectorSearchWSResponse"/>
 </message>
 <message name="squareSearchWS">
 <part name="parameters" element="tns:squareSearchWS"/>
 </message>
 <message name="squareSearchWSResponse">
 <part name="parameters" element="tns:squareSearchWSResponse"/>
 </message>
 <portType name="SearchPattern">
 <operation name="parallelSearchWS">
 <input message="tns:parallelSearchWS"/>
 <output message="tns:parallelSearchWSResponse"/>
 </operation>
 <operation name="sectorSearchWS">
 <input message="tns:sectorSearchWS"/>
 <output message="tns:sectorSearchWSResponse"/>
 </operation>
 <operation name="squareSearchWS">
 <input message="tns:squareSearchWS"/>
 <output message="tns:squareSearchWSResponse"/>
 </operation>
 </portType>
 <binding name="SearchPatternPortBinding" type="tns:SearchPattern">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
 <operation name="parallelSearchWS">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="sectorSearchWS">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="squareSearchWS">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="SearchPatternService">
 <port name="SearchPatternPort" binding="tns:SearchPatternPortBinding">
 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>
 </port>
 </service>
</definitions>

 120

THIS PAGE INTENTIONALLY LEFT BLANK

 121

APPENDIX D. SEARCH PATTERN CLIENT SOURCE CODE

A. CODE OVERVIEW
This code provides a GUI client that can be used by any OS that supports

the Java Virtual Machine. Swing is a GUI toolkit for Java. It is one part of the

Java Foundation Classes. Swing includes GUI widgets such as text boxes,

buttons, split-panes, and tables. This client is one way to consume the Search

Pattern Web service.

B. SEARCH PATTERN SWING CLIENT

/*
 * SearchForm.java
 *
 * Created on November 27, 2006, 8:16 AM
 */

package mil.uscg.searchclient;

/**
 *
 * @author bob
 */
public class SearchForm extends javax.swing.JFrame {

 /** Creates new form SearchForm */
 public SearchForm() {
 initComponents();
 }

 /** This method is called from within the constructor to
 * initialize the form.
 * WARNING: Do NOT modify this code. The content of this method is
 * always regenerated by the Form Editor.
 */
 // <editor-fold defaultstate="collapsed" desc=" Generated Code ">//GEN-
BEGIN:initComponents
 private void initComponents() {
 btnGrpSearchType = new javax.swing.ButtonGroup();
 jPanel1 = new javax.swing.JPanel();
 jRadParallel = new javax.swing.JRadioButton();
 jRadSector = new javax.swing.JRadioButton();
 jRadExpSq = new javax.swing.JRadioButton();
 jPanel2 = new javax.swing.JPanel();
 jLblLat = new javax.swing.JLabel();
 jLabel2 = new javax.swing.JLabel();
 jLblLen = new javax.swing.JLabel();
 jLblWidth = new javax.swing.JLabel();
 jLblTs = new javax.swing.JLabel();
 jLblMa = new javax.swing.JLabel();
 jTxtLat = new javax.swing.JTextField();
 jTxtLon = new javax.swing.JTextField();
 jTxtLen = new javax.swing.JTextField();
 jTxtWidth = new javax.swing.JTextField();

 122

 jTxtTs = new javax.swing.JTextField();
 jTxtMa = new javax.swing.JTextField();
 jPanel3 = new javax.swing.JPanel();
 jScrollPane1 = new javax.swing.JScrollPane();
 jTxtAreaResults = new javax.swing.JTextArea();
 jToggleButton1 = new javax.swing.JToggleButton();
 jToggleButton2 = new javax.swing.JToggleButton();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);
 jPanel1.setBorder(javax.swing.BorderFactory.createTitledBorder("Search Type"));
 btnGrpSearchType.add(jRadParallel);
 jRadParallel.setSelected(true);
 jRadParallel.setText("Parallel");
 jRadParallel.setBorder(javax.swing.BorderFactory.createEmptyBorder(0, 0, 0, 0));
 jRadParallel.setMargin(new java.awt.Insets(0, 0, 0, 0));
 jRadParallel.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jRadParallelActionPerformed(evt);
 }
 });

 btnGrpSearchType.add(jRadSector);
 jRadSector.setText("Sector");
 jRadSector.setBorder(javax.swing.BorderFactory.createEmptyBorder(0, 0, 0, 0));
 jRadSector.setMargin(new java.awt.Insets(0, 0, 0, 0));
 jRadSector.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jRadSectorActionPerformed(evt);
 }
 });

 btnGrpSearchType.add(jRadExpSq);
 jRadExpSq.setText("Expanding Square");
 jRadExpSq.setBorder(javax.swing.BorderFactory.createEmptyBorder(0, 0, 0, 0));
 jRadExpSq.setMargin(new java.awt.Insets(0, 0, 0, 0));
 jRadExpSq.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jRadExpSqActionPerformed(evt);
 }
 });

 org.jdesktop.layout.GroupLayout jPanel1Layout = new
org.jdesktop.layout.GroupLayout(jPanel1);
 jPanel1.setLayout(jPanel1Layout);
 jPanel1Layout.setHorizontalGroup(
 jPanel1Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(org.jdesktop.layout.GroupLayout.TRAILING,
jPanel1Layout.createSequentialGroup()
 .add(34, 34, 34)
 .add(jRadParallel)
 .add(66, 66, 66)
 .add(jRadSector)
 .add(50, 50, 50)
 .add(jRadExpSq)
 .addContainerGap(35, Short.MAX_VALUE))
);
 jPanel1Layout.setVerticalGroup(
 jPanel1Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(jPanel1Layout.createSequentialGroup()

.add(jPanel1Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)
 .add(jRadExpSq)
 .add(jRadSector)
 .add(jRadParallel))
 .addContainerGap(8, Short.MAX_VALUE))
);

 jPanel2.setBorder(javax.swing.BorderFactory.createTitledBorder("Search
Parameters"));

 123

 jLblLat.setText("Latitude");

 jLabel2.setText("Longitude");

 jLblLen.setText("Length");

 jLblWidth.setText("Width");

 jLblTs.setText("Track Space");

 jLblMa.setText("Major Axis");

 org.jdesktop.layout.GroupLayout jPanel2Layout = new
org.jdesktop.layout.GroupLayout(jPanel2);
 jPanel2.setLayout(jPanel2Layout);
 jPanel2Layout.setHorizontalGroup(
 jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(org.jdesktop.layout.GroupLayout.TRAILING,
jPanel2Layout.createSequentialGroup()

.add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(jLblTs)
 .add(jLblLat)
 .add(jLblLen))
 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

.add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(jTxtTs, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 93,
Short.MAX_VALUE)
 .add(jPanel2Layout.createSequentialGroup()
 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)
 .add(jTxtLat, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 93,
Short.MAX_VALUE))
 .add(jTxtLen, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 93,
Short.MAX_VALUE))
 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 68,
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

.add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.TRAILING, false)
 .add(org.jdesktop.layout.GroupLayout.LEADING,
jPanel2Layout.createSequentialGroup()
 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)
 .add(jLabel2, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 78,
Short.MAX_VALUE))
 .add(org.jdesktop.layout.GroupLayout.LEADING, jLblWidth,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 78, Short.MAX_VALUE)
 .add(org.jdesktop.layout.GroupLayout.LEADING, jLblMa,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))
 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

.add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING, false)
 .add(jTxtLon, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 93,
Short.MAX_VALUE)
 .add(jTxtWidth)
 .add(jTxtMa))
 .addContainerGap())
);
 jPanel2Layout.setVerticalGroup(
 jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(jPanel2Layout.createSequentialGroup()

.add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)
 .add(jLblLat)
 .add(jTxtLat, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

 124

 .add(jTxtLon, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
 .add(jLabel2))
 .add(21, 21, 21)

.add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)
 .add(jLblLen)
 .add(jTxtLen, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
 .add(jTxtWidth, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
 .add(jLblWidth))
 .add(26, 26, 26)

.add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)
 .add(jLblTs)
 .add(jTxtTs, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
 .add(jTxtMa, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
 .add(jLblMa))
 .addContainerGap(12, Short.MAX_VALUE))
);

 jPanel3.setBorder(javax.swing.BorderFactory.createTitledBorder("Results"));
 jTxtAreaResults.setColumns(20);
 jTxtAreaResults.setRows(5);
 jScrollPane1.setViewportView(jTxtAreaResults);

 org.jdesktop.layout.GroupLayout jPanel3Layout = new
org.jdesktop.layout.GroupLayout(jPanel3);
 jPanel3.setLayout(jPanel3Layout);
 jPanel3Layout.setHorizontalGroup(
 jPanel3Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(jPanel3Layout.createSequentialGroup()
 .addContainerGap()
 .add(jScrollPane1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 396,
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
 .addContainerGap(31, Short.MAX_VALUE))
);
 jPanel3Layout.setVerticalGroup(
 jPanel3Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(jPanel3Layout.createSequentialGroup()
 .add(jScrollPane1, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 227,
Short.MAX_VALUE)
 .addContainerGap())
);

 jToggleButton1.setText("Generate");
 jToggleButton1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jToggleButton1ActionPerformed(evt);
 }
 });

 jToggleButton2.setText("Clear");
 jToggleButton2.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jToggleButton2ActionPerformed(evt);
 }
 });

 org.jdesktop.layout.GroupLayout layout = new
org.jdesktop.layout.GroupLayout(getContentPane());

 125

 getContentPane().setLayout(layout);
 layout.setHorizontalGroup(
 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(layout.createSequentialGroup()
 .addContainerGap()
 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(org.jdesktop.layout.GroupLayout.TRAILING,
layout.createSequentialGroup()
 .add(jToggleButton2)
 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)
 .add(jToggleButton1))

.add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.TRAILING, false)
 .add(org.jdesktop.layout.GroupLayout.LEADING, jPanel3, 0,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .add(org.jdesktop.layout.GroupLayout.LEADING, jPanel1,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .add(org.jdesktop.layout.GroupLayout.LEADING, jPanel2,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)))
 .addContainerGap(20, Short.MAX_VALUE))
);
 layout.setVerticalGroup(
 layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(layout.createSequentialGroup()
 .addContainerGap()
 .add(jPanel1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 54,
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)
 .add(jPanel2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 153,
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)
 .add(jPanel3, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 13,
Short.MAX_VALUE)
 .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)
 .add(jToggleButton1)
 .add(jToggleButton2))
 .addContainerGap())
);
 pack();
 }// </editor-fold>//GEN-END:initComponents

 private void jToggleButton2ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_jToggleButton2ActionPerformed
 // Clear Fields
 jTxtLat.setText("");
 jTxtLon.setText("");
 jTxtWidth.setText("");
 jTxtLen.setText("");
 jTxtMa.setText("");
 jTxtTs.setText("");
 jTxtAreaResults.setText("");
 }//GEN-LAST:event_jToggleButton2ActionPerformed

 private void jToggleButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_jToggleButton1ActionPerformed
 // Get Search Results from WS
 double lat = 0;
 double lon = 0;
 double ma = 0;
 double width = 0;
 double length = 0;
 double ts = 0;
 double radius = 0;
 double theta = 0;

 126

 double crs = 0;
 double sqCount = 0;
 int i = 0;

 lat = Double.valueOf(jTxtLat.getText());
 lon = Double.valueOf(jTxtLon.getText());

 if (jRadParallel.isSelected()){

 ma = Double.valueOf(jTxtMa.getText());
 width = Double.valueOf(jTxtWidth.getText());
 length = Double.valueOf(jTxtLen.getText());
 ts = Double.valueOf(jTxtTs.getText());

 try { // Call Web Service Operation
 me.searchclient.SearchPatternService service = new
me.searchclient.SearchPatternService();
 me.searchclient.SearchPattern port = service.getSearchPatternPort();

 // process result here
 java.lang.Object result = port.parallelSearchWS(lat, lon, length, width,
ma, ts);
 jTxtAreaResults.setText(result.toString());
 } catch (Exception ex) {
 // display exceptions here
 jTxtAreaResults.setText(ex.toString());
 }

 }

 if (jRadSector.isSelected()){

 theta = Double.valueOf(jTxtWidth.getText());
 radius = Double.valueOf(jTxtLen.getText());
 crs = Double.valueOf(jTxtTs.getText());
 try { // Call Web Service Operation
 me.searchclient.SearchPatternService service = new
me.searchclient.SearchPatternService();
 me.searchclient.SearchPattern port = service.getSearchPatternPort();

 // process result here
 java.lang.Object result = port.sectorSearchWS(lat, lon, theta, radius,
crs);
 jTxtAreaResults.setText(result.toString());
 } catch (Exception ex) {
 // display exceptions here
 jTxtAreaResults.setText(ex.toString());
 }

 }

 if (jRadExpSq.isSelected()){

 crs = Double.valueOf(jTxtWidth.getText());
 sqCount = Double.valueOf(jTxtLen.getText());
 ts = Double.valueOf(jTxtTs.getText());
 try { // Call Web Service Operation
 me.searchclient.SearchPatternService service = new
me.searchclient.SearchPatternService();
 me.searchclient.SearchPattern port = service.getSearchPatternPort();

 // process result here
 java.lang.Object result = port.squareSearchWS(lat, lon, sqCount, ts,
crs);
 jTxtAreaResults.setText(result.toString());
 } catch (Exception ex) {
 // display exceptions here
 jTxtAreaResults.setText(ex.toString());
 }

 127

 }
 }//GEN-LAST:event_jToggleButton1ActionPerformed

 private void jRadParallelActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_jRadParallelActionPerformed
 // Setup fields for Parallel Search
 jLblLen.setText("Length");
 jLblWidth.setText("Width");
 jLblTs.setText("Track Space");
 jTxtMa.setVisible(true);
 jLblMa.setVisible(true);
 jLblTs.setVisible(true);
 jTxtTs.setVisible(true);
 }//GEN-LAST:event_jRadParallelActionPerformed

 private void jRadExpSqActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_jRadExpSqActionPerformed
 // Setup fields for Expanding Square Search
 jLblLen.setText("Cycles");
 jLblWidth.setText("Initial Track");
 jLblTs.setText("Track Space");
 jTxtTs.setVisible(true);
 jTxtMa.setVisible(false);
 jLblMa.setVisible(false);
 }//GEN-LAST:event_jRadExpSqActionPerformed

 private void jRadSectorActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_jRadSectorActionPerformed
 // Setup fields for Sector Search
 jLblLen.setText("Radius");
 jLblWidth.setText("Theta");
 jLblTs.setText("Initial Track");
 jTxtMa.setVisible(false);
 jLblMa.setVisible(false);
 }//GEN-LAST:event_jRadSectorActionPerformed

 /**
 * @param args the command line arguments
 */
 public static void main(String args[]) {
 java.awt.EventQueue.invokeLater(new Runnable() {
 public void run() {
 new SearchForm().setVisible(true);
 }
 });
 }

 // Variables declaration - do not modify//GEN-BEGIN:variables
 private javax.swing.ButtonGroup btnGrpSearchType;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JLabel jLblLat;
 private javax.swing.JLabel jLblLen;
 private javax.swing.JLabel jLblMa;
 private javax.swing.JLabel jLblTs;
 private javax.swing.JLabel jLblWidth;
 private javax.swing.JPanel jPanel1;
 private javax.swing.JPanel jPanel2;
 private javax.swing.JPanel jPanel3;
 private javax.swing.JRadioButton jRadExpSq;
 private javax.swing.JRadioButton jRadParallel;
 private javax.swing.JRadioButton jRadSector;
 private javax.swing.JScrollPane jScrollPane1;
 private javax.swing.JToggleButton jToggleButton1;
 private javax.swing.JToggleButton jToggleButton2;
 private javax.swing.JTextArea jTxtAreaResults;
 private javax.swing.JTextField jTxtLat;
 private javax.swing.JTextField jTxtLen;
 private javax.swing.JTextField jTxtLon;

 128

 private javax.swing.JTextField jTxtMa;
 private javax.swing.JTextField jTxtTs;
 private javax.swing.JTextField jTxtWidth;
 // End of variables declaration//GEN-END:variables

}

 129

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dan Boger
Naval Postgraduate School
Monterey, California

4. Rick Hayes-Roth
Naval Postgraduate School
Monterey, California

5. Rex Buddenberg
Naval Postgraduate School
Monterey, California

6. Russell Dash
Naval Postgraduate School
Monterey, California

7. Robert Creigh
Naval Postgraduate School
Monterey, California

8. Chris Gunderson
Naval Postgraduate School
Monterey, California

9. Dave Reading
Naval Research Laboratory
Washington, D.C.

10. CDR Marc Sanders
Coast Guard Headquarters
Washington, D.C.

